建筑外文文献及翻译.docx
《建筑外文文献及翻译.docx》由会员分享,可在线阅读,更多相关《建筑外文文献及翻译.docx(15页珍藏版)》请在冰豆网上搜索。
建筑外文文献及翻译
外文原文
StudyonHumanResourceAllocationinMulti-ProjectBasedonthePriorityandtheCostofProjects
LinJingjing,ZhouGuohua
SchoolofEconomicsandmanagement,SouthwestJiaotongUniversity,610031,China
Abstract----Thispaperputforwardtheaffectingfactorsofproject’spriority.whichisintroducedintoamulti-objectiveoptimizationmodelforhumanresourceallocationinmulti-projectenvironment.Theobjectivesofthemodelweretheminimumcostlossduetothedelayofthetimelimitoftheprojectsandtheminimumdelayoftheprojectwiththehighestpriority.ThenaGeneticAlgorithmtosolvethemodelwasintroduced.Finally,anumericalexamplewasusedtotestifythefeasibilityofthemodelandthealgorithm.
IndexTerms—GeneticAlgorithm,HumanResourceAllocation,Multi-project’sproject’spriority.
1.INTRODUCTION
Moreandmoreenterprisesarefacingthechallengeofmulti-projectmanagement,whichhasbeenthefocusamongresearchesonprojectmanagement.Inmulti-projectenvironment,thesharearecompetitionofresourcessuchascapital,timeandhumanresourcesoftenoccur.Therefore,it’scriticaltoscheduleprojectsinordertosatisfythedifferentresourcedemandsandtoshortentheprojects’durationtimewithresourcesconstrained,asin[1].Formanyenterprises,thehumanresourcesarethemostpreciousasset.Soenterprisesshouldreasonablyandeffectivelyallocateeachresource,especiallythehumanresource,inordertoshortenthetimeandcostofprojectsandtoincreasethebenefits.Someliteratureshavediscussedtheresourceallocationprobleminmulti-projectenvironmentwithresourcesconstrained.Reference[1]designedaniterativealgorithmandproposedamathematicalmodeloftheresource-constrainedmulti-projectscheduling.Basedonworkbreakdownstructure(WBS)andDantzig-Wolfedecompositionmethod,afeasiblemulti-projectplanningmethodwasillustrated,asin[2].References[3,4]discussedtheresource-constrainedprojectschedulingbasedonBranchDelimitationmethod.Reference[5]putforwardtheframeworkofhumanresourceallocationinmulti-projectinLong-term,medium-termandshort-termaswellasresearchanddevelopment(R&D)environment.BasedonGPSSlanguage,simulationmodelofresourcesallocationwasbuilttogettheproject’sdurationtimeandresourcesdistribution,asin[6].Reference[7]solvedtheengineeringproject’sresourcesoptimizationproblemusingGeneticAlgorithms.Theseliteraturesreasonablyoptimizedresourcesallocationinmulti-project,butallhadthesameprerequisitethattheproject’simportanceisthesametoeachother.Thispaperwillanalyzetheeffectsofproject’spriorityonhumanresourceallocation,whichistobeintroducedintoamathematicalmodel;finally,aGeneticAlgorithmisusedtosolvethemodel.
2.EFFECTSOFPROJECTSPRIORITYONHUMANRESOUCEALLOCATIONANDTHEAFFECTINGFACTORSOFPROJECT’SPRIORITY
Resourcesharingisoneofthemaincharacteristicsofmulti-projectmanagement.Theallocationofsharedresourcesrelatestotheefficiencyandrationalityoftheuseofresources.Whenresourceconflictoccurs,theresourcedemandoftheprojectwithhighestpriorityshouldbesatisfiedfirst.Onlyafterthat,cantheprojectswithlowerprioritybeconsidered.
Basedontheideaofprojectclassificationmanagement,thispaperclassifiestheaffectingfactorsofproject’spriorityintothreecategories,astheproject’sbenefits,thecomplexityofprojectmanagementandtechnology,andthestrategicinfluenceontheenterprise’sfuturedevelopment.Thepriorityweightoftheprojectisthefunctionoftheabovethreecategories,asshownin
(1).W=f(I,c,s…)
(1)
Wherewreferstoproject’spriorityweight;Ireferstothebenefitsoftheproject;creferstothecomplexityoftheproject,includingthetechnologyandmanagement;sreferstotheinfluenceoftheprojectonenterprise.Thebiggerthevaluesofthethreecategories,thehigherthepriorityis.
3.HUMANRESOURCEALLOCATIONMODELINMULTI-PROJECTENVIRONMENT
3.1ProblemDescription
Accordingtotheconstrainttheory,theenterpriseshouldstrictlydifferentiatethebottleneckresourcesandthenon-bottleneckresourcestosolvetheconstraintproblemofbottleneckresources.Thispaperwillstressonthelimitedcriticalhumanresourcesbeingallocatedtomulti-projectwithdefinitedurationtimesandpriority.
Tosimplifytheproblem,wesupposethatthatthreeexistseveralparallelprojectsandasharedresourcesstorehouse,andtheenterprise’soperationonlyinvolvesonekindofcriticalhumanresources.Thesupplyofthecriticalhumanresourceislimited,whichcannotbeobtainedbyhiringoranyotherwaysduringacertainperiod.whenresourceconflictamongparallelprojectsoccurs,wemayallocatethehumanresourcetomulti-projectaccordingtoproject’spriorities.Theallocationofnon-criticalindependenthumanresourcesisnotconsideredinthispaper,whichsupposesthattheindependentresourcesthateachprojectneedscanbesatisfied.
Engineeringprojectsusuallyneedmassivecriticalskilledhumanresourcesinsomecriticalchain,whichcannotbesubstitutedbytheotherkindofhumanresources.Whenthecriticalchainsofprojectsatthesametimeduringsomeperiod,thereoccurresourceconflictandcompetition.Thepaperalsosupposesthatthecorrespondingnetworkplanningofvariousprojectshavealreadybeenestablished,andthepeaksofeachproject’sresourcesdemandhavebeenoptimized.Thedelayofthecriticalchainwillaffectthewholeproject’sdurationtime.
3.2ModelHypotheses
Thefollowinghypotheseshelpustoestablishamathematicalmodel:
(1)Thenumberofmutuallyindependentprojectsinvolvedinresourceallocationprobleminmulti-projectisN.EachprojectisindicatedwithQi,whilei=1,2,…N.
(2)Thepriorityweightsofmulti-projecthavebeendetermined,whicharerespectivelyw1,w2…wn.
(3)ThetotalnumberofthecriticalhumanresourcesisR,withrkstandingforeachperson,whilek=1,2,…,R
(4)Δki=
(5)Resourcescapturingbyseveralprojectsbeginsontime.tEiistheexpecteddurationtimeofprojectIthatneedsthecriticalresourcestofinishsometaskaftertimet,onthepremisethatthehumanresourcesdemandcanbesatisfied.tAiistherealdurationtimeofprojectIthatneedsthecriticalresourcetofinishsometaskaftertimet.
(6)Accordingtothecontract,ifthedelayoftheprojecthappensthedailycostlossduetothedelayis△ciforprojectI.Accordingtotheproject’simportance,thedelayofaprojectwillnotonlycausethecostloss,butwillalsodamagetheprestigeandstatusoftheenterprise.(whilethelatentcostisdifficulttoquantify,itisn’tconsideredinthisarticletemporarily.)
(7)Fromthehypothesis(5),wecanknowthataftertimet,thetime-gapbetweentherealandexpecteddurationtimeofprojectIthatneedsthecriticalresourcestofinishsometaskis△ti,(△ti=tAi-tEi).Forthereexistsresourcescompetition,thetime–gapisnecessarilyapositivenumber.
(8)Accordingtohypotheses(6)and(7),thetotalcostlossofprojectIisCi(Ci=△ti*△Ci).
(9)Thedurationtimeofactivitiescanbeexpressedbytheworkloadofactivitiesdividedbythequantityofresources,whichcanbeindicatedwithfollowingexpressionoftAi=ηi/Ri*,.Intheexpression,ηireferstotheworkloadofprojectsIduringsomeperiod,whichissupposedtobefixedandpre-determinedbytheprojectmanagersonprojectplanningphase;Ri*referstothenumberofthecriticalhumanresourcesbeingallocatedtoprojectsIactually,withtheequationRi*=
existing.Duetotheresourcecompetitiontheresourcedemandsofprojectswithhigher
Prioritiesmaybeguarantee,whilethoseprojectswithlowerprioritiesmaynotbefullyguaranteed.Inthissituation,thedecreaseoftheresourcesupplywillleadtotheincreaseofthedurationtimeofactivitiesandtheproject,whiletheworkloadisfixed.
3.3OptimizationModel
Basedontheabovehypotheses,theresourceallocationmodelinmulti-projectenvironmentcanbeestablished.Here,theoptimizationmodelis:
Fi=minZi=min
=min
(2)
=min
=minZ2=min
=min
(3)
Wherewj=max(wi),(
)(4)
Subjectto:
0
=R(5)
Themodelisamulti-objectiveone.Thetwoobjectivefunctionsarerespectivelytominimizethetotalcostloss,whichistoconformtotheeconomictarget,andtoshortenthetimedelayoftheprojectwithhighestpriority.Thefirstobjectivefunctioncanonlyoptimizetheapparenteconomiccost;thereforethesecondobjectivefunctionwillhelptomakeupthislimitation.Fortheprojectwithhighestpriority,timedelaywilldamagenotonlytheeconomicbenefits,butalsothestrategyandtheprestigeoftheenterprise.Thereforeweshouldguaranteethatthemostimportantprojectbefinishedontimeoraheadofschedule.
4.SOLUTIONTOTHEMULTI-OBJECTIVEMODELUSINGGENETICALGORITHM
4.1Themulti-objectiveoptimizationproblemisquitecommon.Generally,eachobjectiveshouldbeoptimizedinordertogetthecomprehensiveobjectiveoptimized.Thereforetheweightofeachsub-objectiveshouldbeconsidered.Reference[8]proposedanimprovedantcolonyalgorithmtosolvethisproblem.Supposedthattheweightsofthetwooptimizingobjectivesareαandβ,whereα+β=1.ThenthecomprehensivegoalisF*,whereF*=αF1+βF2.
4.2ThePrincipleofGeneticAlgorithm
GeneticAlgorithmrootsfromtheconceptsofnaturalselectionandgenetics.It’sarandomsearchtechniqueforglobaloptimizationinacomplexsearchspace.Becauseoftheparallelnatureandlessrestrictions,ithasthekeyfeaturesofgreatcurrency,fastconvergenceandeasycalculation.Meanwhile,itssearchscopeisnotlimite