建筑外文文献及翻译.docx

上传人:b****5 文档编号:26424857 上传时间:2023-06-19 格式:DOCX 页数:15 大小:53.24KB
下载 相关 举报
建筑外文文献及翻译.docx_第1页
第1页 / 共15页
建筑外文文献及翻译.docx_第2页
第2页 / 共15页
建筑外文文献及翻译.docx_第3页
第3页 / 共15页
建筑外文文献及翻译.docx_第4页
第4页 / 共15页
建筑外文文献及翻译.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

建筑外文文献及翻译.docx

《建筑外文文献及翻译.docx》由会员分享,可在线阅读,更多相关《建筑外文文献及翻译.docx(15页珍藏版)》请在冰豆网上搜索。

建筑外文文献及翻译.docx

建筑外文文献及翻译

外文原文

StudyonHumanResourceAllocationinMulti-ProjectBasedonthePriorityandtheCostofProjects

LinJingjing,ZhouGuohua

SchoolofEconomicsandmanagement,SouthwestJiaotongUniversity,610031,China

Abstract----Thispaperputforwardtheaffectingfactorsofproject’spriority.whichisintroducedintoamulti-objectiveoptimizationmodelforhumanresourceallocationinmulti-projectenvironment.Theobjectivesofthemodelweretheminimumcostlossduetothedelayofthetimelimitoftheprojectsandtheminimumdelayoftheprojectwiththehighestpriority.ThenaGeneticAlgorithmtosolvethemodelwasintroduced.Finally,anumericalexamplewasusedtotestifythefeasibilityofthemodelandthealgorithm.

IndexTerms—GeneticAlgorithm,HumanResourceAllocation,Multi-project’sproject’spriority.

1.INTRODUCTION

Moreandmoreenterprisesarefacingthechallengeofmulti-projectmanagement,whichhasbeenthefocusamongresearchesonprojectmanagement.Inmulti-projectenvironment,thesharearecompetitionofresourcessuchascapital,timeandhumanresourcesoftenoccur.Therefore,it’scriticaltoscheduleprojectsinordertosatisfythedifferentresourcedemandsandtoshortentheprojects’durationtimewithresourcesconstrained,asin[1].Formanyenterprises,thehumanresourcesarethemostpreciousasset.Soenterprisesshouldreasonablyandeffectivelyallocateeachresource,especiallythehumanresource,inordertoshortenthetimeandcostofprojectsandtoincreasethebenefits.Someliteratureshavediscussedtheresourceallocationprobleminmulti-projectenvironmentwithresourcesconstrained.Reference[1]designedaniterativealgorithmandproposedamathematicalmodeloftheresource-constrainedmulti-projectscheduling.Basedonworkbreakdownstructure(WBS)andDantzig-Wolfedecompositionmethod,afeasiblemulti-projectplanningmethodwasillustrated,asin[2].References[3,4]discussedtheresource-constrainedprojectschedulingbasedonBranchDelimitationmethod.Reference[5]putforwardtheframeworkofhumanresourceallocationinmulti-projectinLong-term,medium-termandshort-termaswellasresearchanddevelopment(R&D)environment.BasedonGPSSlanguage,simulationmodelofresourcesallocationwasbuilttogettheproject’sdurationtimeandresourcesdistribution,asin[6].Reference[7]solvedtheengineeringproject’sresourcesoptimizationproblemusingGeneticAlgorithms.Theseliteraturesreasonablyoptimizedresourcesallocationinmulti-project,butallhadthesameprerequisitethattheproject’simportanceisthesametoeachother.Thispaperwillanalyzetheeffectsofproject’spriorityonhumanresourceallocation,whichistobeintroducedintoamathematicalmodel;finally,aGeneticAlgorithmisusedtosolvethemodel.

2.EFFECTSOFPROJECTSPRIORITYONHUMANRESOUCEALLOCATIONANDTHEAFFECTINGFACTORSOFPROJECT’SPRIORITY

Resourcesharingisoneofthemaincharacteristicsofmulti-projectmanagement.Theallocationofsharedresourcesrelatestotheefficiencyandrationalityoftheuseofresources.Whenresourceconflictoccurs,theresourcedemandoftheprojectwithhighestpriorityshouldbesatisfiedfirst.Onlyafterthat,cantheprojectswithlowerprioritybeconsidered.

Basedontheideaofprojectclassificationmanagement,thispaperclassifiestheaffectingfactorsofproject’spriorityintothreecategories,astheproject’sbenefits,thecomplexityofprojectmanagementandtechnology,andthestrategicinfluenceontheenterprise’sfuturedevelopment.Thepriorityweightoftheprojectisthefunctionoftheabovethreecategories,asshownin

(1).W=f(I,c,s…)

(1)

Wherewreferstoproject’spriorityweight;Ireferstothebenefitsoftheproject;creferstothecomplexityoftheproject,includingthetechnologyandmanagement;sreferstotheinfluenceoftheprojectonenterprise.Thebiggerthevaluesofthethreecategories,thehigherthepriorityis.

3.HUMANRESOURCEALLOCATIONMODELINMULTI-PROJECTENVIRONMENT

3.1ProblemDescription

Accordingtotheconstrainttheory,theenterpriseshouldstrictlydifferentiatethebottleneckresourcesandthenon-bottleneckresourcestosolvetheconstraintproblemofbottleneckresources.Thispaperwillstressonthelimitedcriticalhumanresourcesbeingallocatedtomulti-projectwithdefinitedurationtimesandpriority.

Tosimplifytheproblem,wesupposethatthatthreeexistseveralparallelprojectsandasharedresourcesstorehouse,andtheenterprise’soperationonlyinvolvesonekindofcriticalhumanresources.Thesupplyofthecriticalhumanresourceislimited,whichcannotbeobtainedbyhiringoranyotherwaysduringacertainperiod.whenresourceconflictamongparallelprojectsoccurs,wemayallocatethehumanresourcetomulti-projectaccordingtoproject’spriorities.Theallocationofnon-criticalindependenthumanresourcesisnotconsideredinthispaper,whichsupposesthattheindependentresourcesthateachprojectneedscanbesatisfied.

Engineeringprojectsusuallyneedmassivecriticalskilledhumanresourcesinsomecriticalchain,whichcannotbesubstitutedbytheotherkindofhumanresources.Whenthecriticalchainsofprojectsatthesametimeduringsomeperiod,thereoccurresourceconflictandcompetition.Thepaperalsosupposesthatthecorrespondingnetworkplanningofvariousprojectshavealreadybeenestablished,andthepeaksofeachproject’sresourcesdemandhavebeenoptimized.Thedelayofthecriticalchainwillaffectthewholeproject’sdurationtime.

3.2ModelHypotheses

Thefollowinghypotheseshelpustoestablishamathematicalmodel:

(1)Thenumberofmutuallyindependentprojectsinvolvedinresourceallocationprobleminmulti-projectisN.EachprojectisindicatedwithQi,whilei=1,2,…N.

(2)Thepriorityweightsofmulti-projecthavebeendetermined,whicharerespectivelyw1,w2…wn.

(3)ThetotalnumberofthecriticalhumanresourcesisR,withrkstandingforeachperson,whilek=1,2,…,R

(4)Δki=

(5)Resourcescapturingbyseveralprojectsbeginsontime.tEiistheexpecteddurationtimeofprojectIthatneedsthecriticalresourcestofinishsometaskaftertimet,onthepremisethatthehumanresourcesdemandcanbesatisfied.tAiistherealdurationtimeofprojectIthatneedsthecriticalresourcetofinishsometaskaftertimet.

(6)Accordingtothecontract,ifthedelayoftheprojecthappensthedailycostlossduetothedelayis△ciforprojectI.Accordingtotheproject’simportance,thedelayofaprojectwillnotonlycausethecostloss,butwillalsodamagetheprestigeandstatusoftheenterprise.(whilethelatentcostisdifficulttoquantify,itisn’tconsideredinthisarticletemporarily.)

(7)Fromthehypothesis(5),wecanknowthataftertimet,thetime-gapbetweentherealandexpecteddurationtimeofprojectIthatneedsthecriticalresourcestofinishsometaskis△ti,(△ti=tAi-tEi).Forthereexistsresourcescompetition,thetime–gapisnecessarilyapositivenumber.

(8)Accordingtohypotheses(6)and(7),thetotalcostlossofprojectIisCi(Ci=△ti*△Ci).

(9)Thedurationtimeofactivitiescanbeexpressedbytheworkloadofactivitiesdividedbythequantityofresources,whichcanbeindicatedwithfollowingexpressionoftAi=ηi/Ri*,.Intheexpression,ηireferstotheworkloadofprojectsIduringsomeperiod,whichissupposedtobefixedandpre-determinedbytheprojectmanagersonprojectplanningphase;Ri*referstothenumberofthecriticalhumanresourcesbeingallocatedtoprojectsIactually,withtheequationRi*=

existing.Duetotheresourcecompetitiontheresourcedemandsofprojectswithhigher

Prioritiesmaybeguarantee,whilethoseprojectswithlowerprioritiesmaynotbefullyguaranteed.Inthissituation,thedecreaseoftheresourcesupplywillleadtotheincreaseofthedurationtimeofactivitiesandtheproject,whiletheworkloadisfixed.

3.3OptimizationModel

Basedontheabovehypotheses,theresourceallocationmodelinmulti-projectenvironmentcanbeestablished.Here,theoptimizationmodelis:

Fi=minZi=min

=min

(2)

=min

=minZ2=min

=min

(3)

Wherewj=max(wi),(

)(4)

Subjectto:

0

=R(5)

Themodelisamulti-objectiveone.Thetwoobjectivefunctionsarerespectivelytominimizethetotalcostloss,whichistoconformtotheeconomictarget,andtoshortenthetimedelayoftheprojectwithhighestpriority.Thefirstobjectivefunctioncanonlyoptimizetheapparenteconomiccost;thereforethesecondobjectivefunctionwillhelptomakeupthislimitation.Fortheprojectwithhighestpriority,timedelaywilldamagenotonlytheeconomicbenefits,butalsothestrategyandtheprestigeoftheenterprise.Thereforeweshouldguaranteethatthemostimportantprojectbefinishedontimeoraheadofschedule.

4.SOLUTIONTOTHEMULTI-OBJECTIVEMODELUSINGGENETICALGORITHM

4.1Themulti-objectiveoptimizationproblemisquitecommon.Generally,eachobjectiveshouldbeoptimizedinordertogetthecomprehensiveobjectiveoptimized.Thereforetheweightofeachsub-objectiveshouldbeconsidered.Reference[8]proposedanimprovedantcolonyalgorithmtosolvethisproblem.Supposedthattheweightsofthetwooptimizingobjectivesareαandβ,whereα+β=1.ThenthecomprehensivegoalisF*,whereF*=αF1+βF2.

4.2ThePrincipleofGeneticAlgorithm

GeneticAlgorithmrootsfromtheconceptsofnaturalselectionandgenetics.It’sarandomsearchtechniqueforglobaloptimizationinacomplexsearchspace.Becauseoftheparallelnatureandlessrestrictions,ithasthekeyfeaturesofgreatcurrency,fastconvergenceandeasycalculation.Meanwhile,itssearchscopeisnotlimite

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 管理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1