江苏大学电机学课后习题答案.docx
《江苏大学电机学课后习题答案.docx》由会员分享,可在线阅读,更多相关《江苏大学电机学课后习题答案.docx(34页珍藏版)》请在冰豆网上搜索。
江苏大学电机学课后习题答案
p42:
2-3设有一台500kVA、50Hz、三相变压器、Dyn连接(上列符号的意义为一次绕组接成三角形,二次绕组接成星形并有中线引出,额定电压为10000/400V(上列数字的意义为一次额定线电压10000V,二次额定线电压为400V,以后不加说明,额定电压均指线电压;(1试求一次额定线电流及相电流,二次额定线电流;
(2如一次每相绕组的线圈有960匝,问二次每相绕组的线圈有几匝?
每匝的感应电动势
为多少?
(3如铁芯中磁通密度的最大值为1.4T,求该变压器铁芯的截面积;
(4如在额定运行情况下绕组的电流密度为2
mm/3A,求一、二次绕组各应有的导线截
面。
解:
(1一次绕组三角形连接,线电压等于相电压10000111==ψNNUUV额定线电流(AUSIN
NN87.2810000
31050033111=⨯⨯=
=
额定相电流(AIINN67.163
87.283111==
=
ψ
二次绕组Y连接,额定线电流等于额定相电流(AUSIIN
NNN71.721400
310500332212=⨯⨯=
=
=ψ
(2二次相电压2313
400
322≈=
=
N
NUUψψψ
NNUUNNK2121=
=
所以(匝2210000960
23111
22≈⨯=
⨯=
ψ
ψNNNNNN
每匝的感应电动势5.1022
231
e2
2==
=
NUNψ(V(3m11f44.4Φ=NUNSBmm=Φ所以截面积(
22m11m1035.34
.19605044.410000
f44.4-⨯=⨯⨯⨯==
BNUSN
一次绕组导线截面积61110557.53
67
.16-⨯==
=
ρ
ψ
NIS(2m
二次绕组导线截面积42210406.23
71
.721-⨯==
=ρ
ψ
NIS(2mp42:
2-5
设有一台
10kVA、2200/220V、单相变压器,其参数如下
Ω=6.3r1,Ω=036.0r2,Ω=+=26xxx21k,;在额定电压下的铁芯损耗w70pe=F,空载电流0I为额定电流的5%。
假设一、二次绕组的漏抗如归算到同一方时可作为相等,试求(1各参数的标幺值,并绘出该变压器的T形等效电路;(2设变压器二次电压和二次电流为额定值,且有8.0cos2=θ滞后功率因数,求一次电压和电流。
1*U∙*
mr2*r*
mx2*
x1*
I∙
*
∙
mI2*
I∙
2*
∙
U1*
r1*
x1*2*
∙∙
=EE
解:
(122
1111220048410000
NbN
NUZZS====Ω2222122204.8410000NbN
NUZZS====Ω01*0.05,*1IU∙
∙
==
222
0111355.2(0.05(0.05FeFeFe
mNNN
PPPrSIIU=
===Ω10*1
*200.05
*
mUZI∙
∙
=
=
=11355.2*2.8484
mmbrrZ=
==2222***202.819.8mmmxZr=-=-=
1113.6*0.00744484
brrZ=
==
2220.036*0.007444.84brrZ=
==126
*0.05372484
kkbxxZ=
==12**0.5*0.50.053720.0269kxxx===⨯=
(2设二次电0
201∠=∙
*U,则0
287.361-∠=∙
*I
(
(︒∠=+︒-∠+︒∠=++==**∙
*∙*∙*∙*956.0022.10269.000744.087.36101222221jjxrIUEE
︒-∠=+︒
∠=+=-∙
*99.8005112.08
.198.2956.0022.1**1*
jjxrEImmm
︒∠=︒-∠-︒-∠-=-=2.141037.187.36199.8005112.0*2**1IIIm((︒
-∠=︒∠-+︒∠=-+=1.178046.1956.0022.10269.000744.02.141037.1*
1*1*1*1*1jEjxrIU
VUUUN2.23012200046.11*11=⨯=⋅=
AIIIN714.42200
10000
037.11*11=⨯
=⋅=
p43:
2-7设有一台1800kVA、10000/400V,Yyn连接的三相铁芯式变压器。
短路电压
%5.4uk=。
在额定电压下的空载电流为额定电流的4.5%,即NII045.00=,在额定电压
下的空载损耗w6800p0=,当有额定电流时的短路铜耗w22000pkN=。
试求:
(1当一次电压保持额定值,一次电流为额定值且功率因数0.8滞后时的二次电压和电流。
(2根据(1的计算值求电压变化率,并与电压变化率公式的计算值相比较。
解:
(111800103.9331NNN
SKVA
IAUKV
=
=
=⨯
0.04510000/3
32.5103.9
k
kkUZI⨯===Ω
22
220000.67933103.9kkkPrI=
==Ω⨯
22222.50.06792.406kkkxZr=-=-=Ω
00.0450.045103.94.6755NIIA==⨯=
022********.6334.6755
mPrI=
==Ω⨯10(/310000
1234.834.6755NmUZI=
==Ω⨯
22221234.8103.61230.2mmmxZr=-=-=Ω
设:
11100001000030,03
NUVUVο
ο
∙
∙
=∠=
∠则相电压1103.9arccos0.8103.936.87NIAο∙
=∠=∠-
1
04.67785.20mm
UIArjxο∙
∙
=
=∠-+
210'103.936.874.67785.20100.8734.46NIIIAοοο∙
∙
∙
-=-=∠--∠-=∠-
2210000
'100.872521.75400
IKIA==
⨯=2211'['(]5579.9161.36kkkUUUUIrjxVο∙
∙
∙
∙
∙
-=-=--+=∠-22'5579.9
223.225
UUVK=
==(22400
230.953
UV=
=相电压230.95223.2
%100%3.35%230.95
U-∆=
⨯=
111
cossin:
%100
NkNkIrIxUUθθ
+∆=
⨯计算
103.90.6790.8103.92.4060.6
1003.57%10000/3
⨯⨯+⨯⨯=
⨯=
2-8:
解:
AUSIN
NN33.296300
3103203311=⨯⨯=
=
1*
U∙
*
mr*
kr*
LR*
mx*kx1*
I∙
*
∙
mI2*
I∙
*
2U
AUSINNN88.461400
3103203322=⨯⨯=
=
接
(d5.11032040033333
322
22222222Ω=⨯⨯=====
NN
N
NNNNNNNSUUSUIUIUZφ
φ(1空载时,1U,UU*0N0==则,计算激磁阻抗:
67.1688
.4617.271
1*
0*===
Izm
259.188.4617.27320
45.1p2
2*0*0*=⎪⎭
⎫⎝⎛==
Irm62.162
*2**=-=mmmrzx
短路时,1I,*==kNkII则,计算短路阻抗:
04508.06300284
**==
=kkuz01781.0320
7
.5**==
=kkpr04139.02
*2**=-=kkkrzx
(2RY3R→∆→:
则:
N
LZR
R2*3=
1I1*2*1==,且U由图可得:
((49.035.19813.039813
.004139.001781.01
12**22*2
*2***
2*
1=⨯=⋅=⇒⎪⎪⎪
⎭
⎪⎪
⎪⎬
⎫=++=++=NLLLkLkZRRRRxRrIUp54:
3-1
B(X
C(Y
b(xc(yA(Z(a
Dd0
Dy11
B(X
C(Y
bcA(Z(a
Dy11
xyz
B
C
XYZ
b(x
A(a,z
Yd7
c(y
Yy10
A(aB
CXYZ
bc
xyz
Yy10p54:
3-2
A(aB
CXYZ
bc
xyz
Yy10
B
C
XYZ
b
c
A(a
Yd9
B(X
C(Y
b(x
c(y
A(Z(a
Dd4
p54:
3-3设有两台变压器并联运行,变压器I的容量为1000kVA,变压器II的容量为500kVA,在不容许任何一台变压器过载的条件下,试就下列两种情况求该变压器组可能供给的最大负载。
(1当变压器I的短路电压为变压器II的短路电压的90%时,即设UkI*=0.9UkII*
(2当变压器II的短路电压为变压器I的短路电压的90%时,即设UkII*=0.9UkI*解:
(1由题目知变压器I先满载,即βI=1
9.0:
11
:
1:
*
*21==
kIIkIUUββ∴βII=0.9
(14505009.010*******kVASSSNN=⨯+⨯=+=ββ总
(2由题目知变压器II先满载,即βII=1
1:
9.01
:
1:
*
*21==
kIIkIUUββ∴βI=0.9
(1400500110009.02211kVASSSNN=⨯+⨯=+=ββ总
p54:
3-4解:
(10568.010
50063003322503
21*
*
=⨯===NIkIkIkIzzzu0532.010
100063003823003
21*
*=⨯===NIIkIIkIIkIIzzzu(2kVASkVASkVASSSSIIIIIIII
I818,3821200468.00532.0/0568.01000/500==⇒⎪⎭
⎪⎬⎫=+==(3从比值
468.00532
.0/0568.01000
/500==IIISS看:
IIS大,为了使两台变压器都不超过额定电压,则变压器II先满载。
kVA
SSSkVASkVASSSIIIIIIIII14684681000468.00532.0/0568.01000/500=+==⇒⎪⎭
⎪⎬⎫===总则
(4绕组中的电流,即为相电流(注二次绕组为d接
AII3184003103823
3I2
I2=⨯⨯==
φ
AII6824003108183
3II2
II2=⨯⨯==
φ
6-2有一三相电机,Z=36,2P=4,τ9
7
=y,a=1,双层叠绕组,试求:
(1绕组因数KN1,KN5,KN7;
(2画出槽导体电动势星形图;(3画出绕组展开图。
解:
(133436
2=⨯==
PmZ每极每相槽数q︒=⨯︒
=︒=203
3180180mq槽距角α
︒=︒⨯-=401809
7
1(β短距角
7,5,1(,2cos2
sin
2sin
=∙=⋅=νβααν
ννvvqvqkk绕组因数kpdN
902.0240cos2
20sin
32203sin
2cos2sin2sin,11=︒∙︒︒⨯=∙==βααqqk时vN
038.02405cos2205sin
322035sin
55
-=︒⨯∙︒⨯︒⨯⨯==Nk时v
136.02407cos2
207sin
322037sin
77
=︒⨯∙︒⨯︒⨯⨯==Nk时v
(2画出槽导体电动势星形图;
(1画出绕组展开图。
6-3有一三相电机,Z=48,2P=4,a=1,每相导体数N=96,f=50Hz,双层短距绕组,星形接法,每极磁通Wb2
110115.1-⨯=φ,
Wb2310365.0-⨯=φ,Wb251024.0-⨯=φ,
Wb2710093.0-⨯=φ.试求:
(1力求削弱5次和7次谐波电动势,节距y应选多少?
(2此时每相电动势φE;(3此时的线电动势lE.
解:
43448
2=⨯==
PmZ每极每相槽数q︒=⨯︒
=︒=154
3180180mq槽距角α
(1为削弱ν次谐波
Pyτν
1
1(-=------(P104
则为削弱5次谐波:
Pyτ54=,削弱7次谐波:
Pyτ7
6
=
要同时削弱5次和7次谐波104
48
6565=⨯=
=Pyτ(2
︒=︒⨯-=301806
5
1(β短距角,或︒=⨯-=30(ατβyP
7,5,1(,2cos2
sin
2sin
=∙=⋅=νβααν
ννvvqvqkk绕组因数kpdN
925.0230cos2
15sin
42154sin
2cos2sin2sin,11
=︒∙︒︒⨯=∙==βααqqk时vN
053.02305cos2155sin
421545sin
55
=︒⨯∙︒⨯︒⨯⨯==Nk时v
041.02157cos2
157sin
421547sin
77
︒⨯∙︒⨯︒⨯⨯==Nk时v
(3
VNKfEN8.21910115.196925.05044.444.421111=⨯⨯⨯⨯⨯=Φ=-ϕVNKfEN55.131024.096053.025044.444.425555=⨯⨯⨯⨯⨯=Φ=-ϕV
NKfEN689.510093.096041.035044.444.427777=⨯⨯⨯⨯⨯=Φ=-ϕVEEEEl6.381
3272521=++=ϕϕϕ
6-7
7-2设有一三相电机,6极,双层绕组,星形接法,Z=54,y=7槽,10=CN,绕组中
电流
Hzf50=,输入电流有效值AI16=,试求:
旋转磁势的基波、5次、7次谐
波分量的振幅及转速、转向。
解:
33654
2=⨯==
PmZ每极每相槽数q︒=⨯︒
=︒=203
3180180mq槽距角α
︒=︒⨯-=⨯-=402076
54
((ατβy短距角P
180103322=⨯⨯⨯==a
pqNN每相绕组总的串联匝数c
7,5,1(,2cos2
sin
2sin
=∙=⋅=νβααν
ννvvqvqkk绕组因数kpdN
9019.0240cos2
20sin
32203sin
2cos2sin2sin,11=︒∙︒︒⨯=∙==βααqqk时vN
03778.02405cos2
205sin
322035sin
55
-=︒⨯∙︒⨯︒⨯⨯==Nk时v
1356.02407cos2
207sin322037sin,77
=︒⨯∙︒⨯︒⨯⨯==Nk时v
基波磁动势幅值:
AI
P
NKFFNm9.11681639019.01809.0239.023231
11=⨯⨯⨯⨯=⨯⨯==
基波转速:
min/10003
5060601rPfn=⨯==(正向
5次谐波磁动势幅值:
AI
P
NKFFNm793.9163503778.01809.02359.023235
55=⨯⨯⨯⨯⨯=⨯⨯==
5次谐波转速:
min/2003
550
605605rPfn=⨯⨯==(反向7次谐波磁动势幅值:
AI
P
NKFFNm11.2516371356.01809.02379.02323777=⨯⨯⨯⨯⨯=⨯⨯==
7次谐波转速:
min/1433
750
607607rPfn=⨯⨯==(正向
7-3设有一4极三相交流电机,星形接法,Hz50,定子绕组为双层对称绕组3=q
4=CN,线圈跨距y=7槽,试问流入三相电流为下列各种情况时所产生的磁动势,求出
磁动势的性质和基波振幅。
((⎪
⎩⎪
⎨⎧︒+=︒-==120sin2100120sin2100sin21001(titit
ibbaωωω
⎪
⎩⎪
⎨⎧===tititibbaωωωsin2100sin2100sin21002(
⎪⎩⎪
⎨⎧=-==0sin2100sin21003(b
baititiωω
((
⎪
⎩⎪
⎨⎧︒+-=︒--==30sin28660sin250sin21004(tititibbaωωω
a
icib
i三相电流通入三相绕组中
解:
(1圆形旋转磁动势(正序
︒=⨯︒
=︒=
203
3180180mq槽距角α︒=︒⨯-⨯=⨯-=4020733((ατβy短距角P
4843222=⨯⨯⨯==apqNN每相绕组总的串联匝数c
9019.0240cos2
20sin
32203sin
2cos2sin2sin1=︒∙︒︒⨯=∙=
βααqqkN
合成磁势:
AI
P
NKFFNm2.29221002
9019.0489.0239.02323111=⨯⨯⨯⨯=⨯⨯==
(2合成磁动势为零
(3合成磁动势为脉动磁势
(
120sinsinsinsin11=︒-⋅-=⋅=cmbmafxtFfxtFfωω
[](
[]
[]
(([]
︒++-︒--=︒-+-+-︒+---=︒+⋅=︒-⋅-⋅=++=30cos30cos2
3
120cos(cos(21
120cos(cos(2
130sinsin3120sin(sinsinsin111111xtxtFxtxtFxtxtFxtFxtxtFffffmmmmmcbaωωωωωωωωω
AFFm3374311==
(4椭圆形磁势
(︒∠=++=+308.283
12cbaaIaIaII(︒-∠=++=-8.10763
12cbaaIaIaII(︒-∠=++=9.44473
10cbaaIIII正序电流+aI产生正序旋转磁动势,幅值+
FAIPNKFaN6.8418.282
9019.0489.0239.0231=⨯⨯⨯⨯=⨯⨯=++正序电流-aI产生正序旋转磁动势,幅值-
FAIPNKFaN8.2220762
9019.0489.0239.0231=⨯⨯⨯⨯=⨯⨯=--零序电流0aI
产生合成磁动势为零7-6
9-6
解:
(1电磁功率;:
3116.321034116.755811.5mcufePPPPw=--=⨯--=
内功率:
25811.5237.55574imcufePPPPw=--=-=
输出功率:
2557445295500imecadPPPPw=--=--=电机效率:
231
550087.03%6.3210PPη===⨯(2转差率:
2237.50.0415811.5
cumPSP==同步转速:
1601500/minfnrp=
=由11
NnnSn-=可得15000.0411500n-=额定转速为n=1439r/min
(3电磁转矩:
60557437.0021439PiTNmπ=
=⨯=Ω⨯机械转矩:
2236.52PTNm=
=Ω9-8
解:
(1160750/minfnrp==11
0.037NNnnSn-==由简化转矩公式2
(10.148kNmmSSKK=+
-=(213439260
NNPTNmnπ==∙7325.19mmNTKTNm==⋅由2m
KSTTS=可得S=0.01时T=989.89NmS=0.02时T=1979.78NmS=0.03时T=2969.67Nm
9-10
解:
(122155.9MmecadcuPPPPPkw=+++=
额定转差率:
20.014cuNM
PSP==同步转速:
1601500/minfnrp
=额定转速:
1(11479/minNNnSnr=-=
(22153.7iMcuPPPkw=-=
电磁转矩:
992.38iPTNm=
=⋅Ω(31380(120%175.53
UV⨯-=最大转矩:
2
112211112
2137.92[(]mmpUTNmrrxxω==⋅'+++临界转差率:
22
21120.096(krSrxx'
=='++
负载转矩:
22968.49PTNm=
=⋅Ω由222kkmkkSTSSTSSS+=++可得968.49220.0960.0962137.920.0960.096SS
+⨯=++⨯解得0.020KSS=≤电机能够正常运行
转速1(11470/minnnsr=-=
10.3
解:
(1当起动转矩最大时,有1ks=修正系数1111.04m
xcx=+=则由'122
'21112
1(kcrsrxcx==++解得'20.3984r=
则需串电阻为'220.326rrr∆=-=Ω此时起动电流为112'2'111