重大危险源分级标准.docx

上传人:b****9 文档编号:26191744 上传时间:2023-06-17 格式:DOCX 页数:48 大小:732.31KB
下载 相关 举报
重大危险源分级标准.docx_第1页
第1页 / 共48页
重大危险源分级标准.docx_第2页
第2页 / 共48页
重大危险源分级标准.docx_第3页
第3页 / 共48页
重大危险源分级标准.docx_第4页
第4页 / 共48页
重大危险源分级标准.docx_第5页
第5页 / 共48页
点击查看更多>>
下载资源
资源描述

重大危险源分级标准.docx

《重大危险源分级标准.docx》由会员分享,可在线阅读,更多相关《重大危险源分级标准.docx(48页珍藏版)》请在冰豆网上搜索。

重大危险源分级标准.docx

重大危险源分级标准

1.1.1.1.1.1专业整理分享

重大危险源分级标准

(征求意见稿)

1适用范围

本规范规定了重大危险源评估分级的方法和程序。

本规范为重大危险源评估分级技术规范,适用于包括储罐区、库区、生产场

所等重大危险源。

2规范性引用文件

下列文件中的条款,通过本规范的引用而成为本标准的条款。

凡是标

注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本

规范。

《中华人民共和国安全生产法》

《危险化学品安全管理条例》

《安全生产许可证条例》

《重大危险源辨识》(GB18218)

《安全评价通则》

《关于规范重大危险源监督与管理工作的通知》(安监总协调字[20053125号)

3术语和定义

下列术语和定义适用于本规范。

3.1重大危险源majorhazardinstallations

完美DOC格式

重大危险源是指长期地或者临时地生产、搬运、使用或者储存危险物品,且危险物品的数量等于或超过临界量的单元(包括场所和设施)。

4重大危险源分级判据

重大危险源分级判据如表1所示。

表1重大危险源分级判据分

危险源等级

级判据

死亡人

一级重大危险源

30人)以可能造成30人(含上

一级重大危险源

口J能造成W—29人

二级車大危险源

可能造成3—9人

四级重大危险7原~口J能适成1-2人

具体判别的依据如下:

5重大危险源死亡人数及财产损失计算方法

可能造成的死亡人数评价程序为:

1将重大危险源的周边区域划分成等间隔的网格区,用一笛卡尔坐标体系的网格覆盖城市的区域地图(如图1所示),网格间距大小取决于当地人口密度,以不影响计算结果为准。

2确定每一网格内的人员数量,通过火灾(室内火灾除外)、爆炸、毒物泄漏扩散事故后果模型计算重大危险源事故在每一网格中心处产生的热辐射、超压或毒物浓度的数值,然后通过热辐射、冲击波超压、中毒概率函数将其其转化为造成死亡的概率。

3将每一网格中心的死亡率与人口数量相乘,即得到死亡的人数。

4将所有网格的死亡人数求和,即得到总的死亡人数。

完美DOC格式

具体用下式表示:

nXD.Sv?

(1)

il

式中,N为总的死亡人数,Di为第i个网格的人口密度,S为网格面积,vi为第i个网格的个人死亡率,n为网格的数目。

Petroleumrefinery

 

图1死亡人数计算原理示意图

采用财产损失半径的方法评估事故后果造成的损失,并假定此半径内没有损失的财产与此半径外损失的财产相互抵消,或者说此半径内的财产完全损失,此半径外的财产完全无损失。

财产损失半径通过火灾、爆炸事故后果模型确定。

财产损失半径按下式计算:

WTNT

 

(2)

Ri为i区半径,;Ki为常量。

式中,m

热辐射对建筑物的翹向直接取决于热辐射强度的大小及作用时间的长短,

引燃木材的热通量作为对建筑物破坏财产损失半径,计算公式如下:

(3)

q67301*525400

完美DOC格式

(4)

2

式中,q为引燃木材的热通量(W/m),t为热辐射作用时间,即火灾持续时

间(s)O

6重大危险源评价分级程序

重大危险源的评价分级程序如下图所示。

如果一种危险物质具有多种事故形态,按照后

果最严重的事故形态考虑,即遵循“最大危险原则”。

各类重大危险

源具体事故情景选择、后果计算及死亡概率计算过程参见附录Ao

图2重大危险源评价分级程序

完美DOC格式

附录A:

重大危险源事故后果模型

A.1储罐区重大事故后果分析

A.1.1储罐区的主要事故后果类型

A.1.1.1池火灾

易燃液体如汽油、苯、甲醇、乙酸乙酯等,一旦从储罐及管路中泄漏到地面后,将向四周流淌、扩展,形成一定厚度的液池,若受到防火堤、隔堤的阻挡,液体将在限定区域(相当于围堰)内得以积聚,形成一定范围的液池。

这时,若遇到火源,液池可能被点燃,发生地面池火灾。

A.1.1.2蒸气云爆炸

易燃易爆气体如H2、天然气等,泄漏后随着风向扩散,与周围空气混合成易

燃易爆混合物,在扩散扩过程中如遇到点火源,延迟点火,由于存在某些特殊原

因和条件,火焰加速传播,产生爆炸冲击波超压,发生蒸气云爆炸。

易燃易爆的液化气体如液化石油气、液化丙烷、液化丁烷等,其沸点远小于

环境温度,泄漏后将会由于自身的热量、地面传热、太阳辐射、气流运动等迅速

蒸发,在液池上面形成蒸气云,与周围空气混合成易燃易爆混合物,

并且随着风

向扩散,扩散扩过程中如遇到点火源,也会发生蒸气云爆炸。

A.1.1.3喷射火

对于易燃易爆气体如H2、天然气,以及易燃易爆的液化气体来说,

泄漏后可

能因摩擦产生的静电立即点火,产生喷射火。

A.1.1.4沸腾液体扩展蒸气云爆炸

易燃易爆的液化气体容器在外部火焰的烘烤下可能发生突然破裂,

压力平衡

被破坏,液体急剧气化,并随即被火焰点燃而发生爆炸,产生巨大的火球。

这种事故被称为沸腾液体扩展为蒸气云爆炸。

A.1.1.5中毒事故

毒性的液化气体如液氯、液氨等,由于沸点小于环境温度,泄漏后会因自身

热量、地面传热、太阳辐射、气流运动等迅速蒸发,生成有毒蒸气云,密集在泄

漏源周围,随后由于环境温度、地形、风力和湍流等因素影响产生漂移、扩散,

完美DOC格式

范围变大,浓度减小。

A.1.2储罐区主要事故后果模型

A.1.2.1池火灾事故后果模型

池火灾火焰的几何尺寸及辐射参数按如下步骤计算。

1计算池直径

根据泄漏的液体量和地而性质,按下式可计算最大可能的池面积。

(1)

S为液池面积

(2),W为泄漏液体的质量(),为液体的密度(3

式中,mkg卩kg/m

Hmin为最小油层厚度(m)。

最小物料层厚度与地面性质对应关系见表lo

表1不同性质地而物料层厚度表

地面性质

最小物料层厚度(m)

草地

0.020

粗糙地面

0.025

平整地面

0.010

混凝土地面

0.005

平静的水面

0.0018

2确定火焰高度

计算池火焰高度的经验公式如下:

h=L/=42[Btf/(0gD)『—

(2)

ZD

式中:

L为火焰高度(m),D为池直径(m),mf为燃烧速率(kg/m's),

P0为空气密度(kg/m3),g为引力常数。

3计算火焰表而热通量

假定能量由圆柱形火焰侧而和顶部向周围均匀辐射,用下式计算火焰表而的热通量:

率,f为热辐射系数(可取为0.15),mf为燃烧速率(kg/m's),其它符号同前。

完美DOC格式

4目标接收到的热通量的计算

目标接收到的热通量q(r)的计算公式为:

q(r)q0(l0.0581nr)V(4)=_

式中,q(D为目标接收到的热通量(kw/mJ,q0为由式(3)计算的火焰表面的热通量(kw/m2),r为目标到油区中心的水平距离(m),V为视角系数。

5视角系数的计算

角系数V与目标到火焰垂直轴的距离与火焰半径之比s,火焰高度与直径之比h有关。

其中A、B、J、K、VH、VV是为了描述方便而引入的中间变量,Ji为圆周率。

A.1.2.2蒸气云爆炸事故后果模型

蒸气云爆炸产生的冲击波超压是其主要危害。

冲击波超压可通过传统的TNT

当量系数法进行计算,将事故爆炸产生的爆炸能量等同于一定当量的TNT,也可

完美DOC格式

根据爆炸能量直接计算。

(1)TNT当量法

1确定闪蒸系数

在热力学数据资料的基础上,用下式估算燃料的闪蒸部分。

r-CPTA1F=lexp.1!

LL」

(14)

式中,F为蒸发系数,Cp为燃料的平均比热(kJ/kgK),T为环境压力下容

器内温度与沸点的温差(K),L为汽化热(kj/kg)o

2计算云团中燃料的质量:

Wf2FW(15)

式中,Wf为云团中燃料的质量(kg),W为泄漏的燃料的质量(kg),F为闪蒸

系数。

3计算TNT当量:

=a

¥tnt

ewfHfHTNT

(16)

w为燃料的

当量

W为云团中燃料的质量

H为燃料的

式中,

TNT(kg)

(kg)

TNT

f

f

HTNT

的爆热

ae为当量系数,推荐

aeo

燃烧热(MJ/kg),

TNT

(MJ/kg)TNT

二0.03

④将实际距离转化为无因次距离:

1/3

式中,R为离爆炸点的实际距离(m),尺为无因次距离(m)。

在离爆炸点距离为R处,根据相应的R值,查图1得到超压,进而预测人员

受伤害和建筑受破坏的情况。

△=——+—

(2)直接计算法

在得到云团中燃料的质量的情况下,可按下式直接计算爆炸冲击波超压Po

In(p£/p3)=-0.91261.5058(InZ)0.1675(InZ)20.0320(InZ)3(18)

(0.3WZW12)

zR/(e)13

完美DOC格式

(20)

El.=§WQc«

式中,ps为冲击波正相最大超压(Pa),Z为无量纲距离,Pa为环境压力,

R为目标到爆源的水平距离(m),E为爆源总能量(J),a为蒸气云当量系数,

一般取0.04,W为蒸气云中对爆炸冲击波有实际贡献的燃料质量(Kg),QC为燃

料的燃烧热(J/Kg)o

A.1.2.3喷射火事故后果模型

加压的可燃物泄漏时形成射流,如果在泄漏裂口处被点燃,则形成喷射火。

假定火焰为圆锥形,并用从泄漏处到火焰长度4/5处的点源模型来表示。

①火焰长度计算

喷射火的火焰长度可用如下方程得到:

0.44

=(Hciu)4

L(21)

161.66

式中,L为火焰长度(m),HC为燃烧热(J/kg),ni为质量流速(kg/s)o

②热辐射的通量计算

距离火焰点源为X(m)处接收到的热辐射通量可用下式表示:

T

q(22)

4X21000

2

式中,q为距离X处接收的热辐射的通量(KW/m),f为热辐射率,t为大

气传输率。

大气传输率川按下式计算:

10.05651nX(23)

A.1.2.4沸腾液体扩展为蒸气云爆炸事故后果模型计算主要包括如下步骤。

1火球直径=

(24)

D2.665W0327

完美DOC格式

 

式中,D为火球直径(ni),W为火球中消耗的可燃物质量(Kg)o对单罐储存,

W取罐容量的50%;对双罐储存,W取罐容量的70%;对多罐储存,W取罐容量的

90%o

②火球持续时间

t=l.O89W0327

(25)

式中,t为火球持续时间(s),W同式(24)o

3火球抬升高度

火球在燃烧时,将抬升到一定高度。

火球中心距离地面的高度H由下式估计:

H=D(26)

4火球表而热辐射能量

假设火球表面热辐射能量是均匀扩散的。

火球表而热辐射能量SEP由下式计

算:

SEP=F3mHa/(D2t)Jl(27)

式中,Fs为火球表面辐射的能量比,Ha为火球的有效燃烧热(J/Kg)。

Fs与储罐破裂瞬间储存物料的饱和蒸气压力P(MPa)有关:

Fs=0.27P032(28)

对于因外部火灾引起的BLEVE事故,上式中的P值可取储罐安全阀启动压力

Pv(MPa)的1.21倍,即:

P=1.21氏

Ha由下式求得:

Ha=出-Hv一CpT

(29)

(30)

式中,He为燃烧热(J/kg),Hv为常沸点下的蒸发热(J/kg),Cp为恒压比热

(J/(kg.K)),丁为火球表面火焰温度与环境温度之差(K),一般来说T=1700Ko⑤视角系数

视角系数F的计算公式如下:

F((D/2)/r)2

式中,t为目标事」火球中心的距离(

完美DOC格式

 

1.1.1.1.1.1专业整理分享

令目标与储罐的水平距离为X(m),贝Ih

r(賠+«2)0.5(32)

6大气热传递系数

火球表面辐射的热能在大气中传输时,由于空气的吸收及散射作用,一部分

Ta=Z

能量损失掉了。

假定能量损失比为Q,则大气热传递系数。

a和大气中

的C02和H20的含量、热传输距离及辐射光谱的特性等因素有关。

T

a可由以下的经验公式来求取:

X=一

a2.02(p.r)009(33)

式中,PW为坏境温度下空气中的水蒸气压(N/m2),r为目标到火球表面的距

离(m)o

p=p°XRH(34)

wW

式中,为环境温度下的饱和水蒸气压(N/m2),RH为相对湿度。

r,rD/2(35)

7火球热辐射强度分布函数

在不考虑障碍物对火球热辐射产生阻挡作用的条件下,距离储罐X处的热辐

2

射强度q(W/m)可由丁式计宴:

XT

qSEPFa(36)

A.1.2.5中毒事故后果模型

(1)泄漏模型

①液体泄漏速率模型

液体泄漏可根据流体力学中的柏努力方程计算泄漏量。

当裂口不规则时,可采取等效尺寸代替;当泄漏过程中压力变化时,则往往采用经验公式。

柏努力方程如下:

pl2(p-Po)+

QCdA

Tp2gh

(37)

Q为液体泄漏速率

Cd为无量纲泄漏系数,是海体密度

3,

式中,

(kg/s)

(kg/m)

完美DOC格式

 

A是泄漏孔而积

1.1.1.1.1.

1

专业整理分享

2P为罐压,P0为大气压力

(m),(Pa)

(Pa)

,g为引力常数

2,

(9.8m/s)

 

h为液压高度(m)。

液体出口速度可按下式计算:

u

Cd

 

(38)

 

 

式中,u为液体出口速度

(m/s),其他符号如前。

 

持续时间按下式计翁:

(39)

t8[uo/(Cdg)](At/A)

式中,uO为初始流速(m/s),AT为罐内液面积(m2)。

Cd

泄漏系数Cd的取值通常可从标准化学工程手册中查到。

对于管道破裂,

 

体泄漏系数3

 

高度下降)。

因此,计算岀的泄漏速率是保守的最大可能泄漏速率。

2气体泄漏模型

40)成立时,气

压力气体泄漏通常以射流的方式发生,泄漏的速度与其流动的状态有关,其特征可用临界流(最大岀口速度等于声速)或亚临界流来描述。

Perry等人用如下的关系式作为临界流的判断准则:

当式(/

 

体流动属音速流动;卡真

4D成立时,气体流动属亚音速流动。

(40)

P0

P

2kl

kl

 

式中,P0为环境大气压力(Pa),P为容器压力(Pa),k为气体的绝热指数,即定压比热C和定容比热C之比。

Pv

完美DOC格式

对于很多气体,临界比值(P/Po)cr近似为2,也就是说储压近似等于大气压力的两倍,

此时流体泄漏的岀口速度近似等于声速。

临界流的质量泄漏速率可按下式计算:

kl

(42)

QCdApm2

气体呈亚音速流动时,其泄漏量为:

 

2式中,Q是气体泄漏速率(kg/s),Cd为气体泄漏稀疏,A为裂口面积(m),

M是气体相对分子质量,R是普适气体常数(8・31436Jnio广Q),T是气体的储

PoP

上述考虑的为理想气体的不可逆绝热扩散过程。

此外,没有考虑气体泄漏速

率随时间的变化,因此使用初始储存条件必然导致保守的结果。

3两相流泄漏模型

Cude在1975年建议了两相流泄漏关系式。

假设源容器和泄漏点之间的管道

长度和管道直径之比L/D>12,泄漏点压力与泄漏点上流压力之比Pc/P=0.55O

具体计算方法如下:

第一步,按下式计算两相流的质量分数:

(TTC)Cp

Mv(45)

Hv

式中,MV为蒸发的液体占液体总量的比例,Tc是对应于泄漏点压力Pc的平衡

温度(K),T是对应于泄漏点上流压力P的平衡温度(K),CP是液体的定压比热

[J/(kg•K)),Hv是液体的蒸发热(J/kg)o

P=

第二步,按下式计算两舉流的平均密度:

PP

1

(46)

MvlMv

V1

完美DOC格式

第三步,按下式计算两相流的质量泄漏速率Q(kg/S):

如果L/D<12,先按前面介绍的方法计算纯液体泄漏速率和两相流泄漏速

(3)非重气云扩散模型

①瞬间泄漏扩散模型

式中,C为气云中危险物质浓度(kg/m),He为泄漏源有效高度(ni),Q为源瞬间泄漏量

aaa

(kg),Q'为源连续泄漏速率(kg/s),V为风速(m/s),t为泄漏后的时间(s),“,和’分别为x、y和z方向的扩散系数(m)。

对于连续泄漏,平均时间取lOmino其中ox,ay,。

z与地面的有效粗糙度

有关。

地面有效粗糙度长度如下表所示。

完美DOC格式

表3地而有效粗糙度长度表

地面类型z0/m

地面类型Z0/m

草原、平坦开阔地W0.1

农作物地区0.1'0・3

村落、分散的树林0・3、1

分散的尚矮建筑物(城市)广4

密集的高矮建筑物(大城

市)4

有效粗糙度ZOWO.Im地区的扩散参数按下表选取。

表4Z0W0.Im地区的扩散参数

大气稳定度

oy/m

oz/m

0.22x(l+0.OOOlx1/2

A

0.20x

0.16x(l+0.OOOlx1/2

B

0.12x

0.llx(l+0.OOOlx1/2

1/2

C

0.08x(l+0.0002x)

0.08x(l+0.OOOlx1/2

1/2

D

0.06x(l+0.0015x)

a=a—

0.06x(l+0.OOOlx1/2

1/2

E

0.03x(l+0.0003x)

a=a_

——

0.04x(l+0.OOOlx1/2

1/2

F

)=+

0.016x(1+0.0003x)

=—+

有效粗糙度Z020.Im的粗糙地形扩散系数为:

yyOy

z

SoZo

fy:

Zo)

golnx

5取值。

表5不同夫气稳定度下的系数值

稳定度

A

B

c

D

E

F

a0

0.042

0.115

0.15

0.38

0.3

0.57

bO

1.10

1.5

1.49

2.53

2.4

2.913

cO

0.0364

0.045

0.0182

0.13

0.11

0.0944

dO

0.4364

0.853

0.87

0.55

0.86

0.753

eO

0.05

0.0128

0.01046

0.042

0.01682

0.0228

fO

0.273

0.156

0.089

0.35

0.27

0.29

g

0.024

0.0136

0.0071

0.03

0.022

0.023

0

完美DOC格式

(51)

(52)

式(49)和式(50)中泄漏源有效高度是指泄漏气体形成的气云基本上变成水平状时气云中心的离地高度。

在大多数问题中,泄漏源有效高度难以与泄漏源实际高度相一致。

事实上,它等于泄漏源实际高度加泄漏源抬升高度。

泄漏源抬升高度可以用下而的公式近似计算:

△H=Vd[l・5+0・268P(T_T)T1d5/Vsasas

州=2.4Vsd/V

径(m),V是环境风速(m/s),pa是环境大气压力(Pa),Ts是气云出口温度(K),氏是环境大气温度(K)。

计算出泄漏源抬升高度以后,将泄漏源抬升高度与泄漏源实际高度相加就得到了泄漏源有效高度。

(3)重气云扩散模型

常用模型有盒子模型和平板模型两类。

盒子模型用来描述瞬间泄漏形成的重气云团的运动,平板模型用来描述连续泄漏形成的重气云羽的运动。

这两类模型的核心是因空气进入而引起的气云质量增加速率方程。

①盒子模型

盒子模型使用如下假设:

I、重气云团为正立的坍塌圆柱体,圆柱体初始高度等于初始半径的一半。

II、在重气云团内部,温度、密度和危险气体浓度等参数均匀分布。

III、重气云团中心的移动速度等于风速。

重气扩散的盒子模型示意图如下图所示。

///!

^////Z//////ZAV////

—.空气通过界面遏入云诩

―>云团向外的衿向运动

图2重气云团盒子模型

坍塌圆柱体的径向蔓延速度由下式确定:

VfdrAltg(={[Pp-Pa)Pah1!

2}(53)

式中,Vf为圆柱体的径向蔓延速度(m/s),r为圆柱体半径(m),h为圆柱体

高度(m),t为泄漏后时间(s)。

r,上式变成下面的形式:

等式两边同时乘以2

2={[Pp_PP1纠/2

dr/dt2g(a)/ahr

={【Pp—P】P}兀}(54)

1/2

2aa/

由于假设重伐严和环境习间=没有除尊交離,華气広团的浮力将守恒,即:

计算公式,利用上式就可计算任意时刻重气云团内部危险物质浓度。

但这里不准备采用先推导重气云团高度的计算公式,然后计算重气云团体积和危险物质浓度的方法。

而是先采用量纲分析法求重气云团的体积和浓度,然后利用上式反推重气云团的高度。

重气云团的初始密度(kg/m3)o

初始半径的计算公式为土

随着空气的不断进入,云团的高度和体积也将不断变化。

云团体积随时间的

由于重气云团内部危险气体质量守恒,因此,在重气云团扩散过程中,下式存立:

C/CoV0/v7h0r02)/(h?

2)(59)

3

式中,CO和C分别为初始时刻和t时刻重气云团内部危险物质浓度(kg/m)。

无量纲量V/V。

与x/Vo1'之间存在如下函数关系:

(60)

(61)

Vo(x/Vo1/3)L5,x

式中,x为下风向距离(m)。

它审寸间、风速之间的关系为:

xVt

将上式代入罠(52),得到:

 

环境湍流引起的扩散。

目前,判断重气坍塌过程终止的准则主要有:

 

0.001〜0・of茫间畫炸坍必引起的扩散将让位于环境湍流引起的扩散。

 

(65)

EgV0(x/V013)15

=8

从上式求出x,得到:

 

由于不考虑云团与环境之间的热交换,

(66)

云团浮力守恒,故E=E0o代入上式得

 

到转变点对应的下风向距离为:

完美DOC格式

(67)

xfEo=Vo13(g

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 互联网

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1