小学数学30类典型应用题分析试题.docx
《小学数学30类典型应用题分析试题.docx》由会员分享,可在线阅读,更多相关《小学数学30类典型应用题分析试题.docx(37页珍藏版)》请在冰豆网上搜索。
小学数学30类典型应用题分析试题
?
一、归一问题
【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?
例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
二、归总问题
【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?
例2小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?
例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
三、和差问题
【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?
例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?
四、和倍问题
【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?
例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?
例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
五、差倍问题
【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?
例2爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?
例3商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?
例4粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?
六、倍比问题
【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
例1100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
例2今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?
例3凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?
全县16000亩果园共收入多少元?
七、相遇问题
【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
八、追及问题
【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。
小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。
已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
例5兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校有多远?
例6孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。
后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。
求孙亮跑步的速度。
九、?
植树问题
【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
例1一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?
例2一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?
例3一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?
例4给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?
例5一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?
十、?
年龄问题
【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
例1爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?
明年呢?
例2母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?
例33年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?
例4甲对乙说:
“当我的岁数曾经是你现在的岁数时,你才4岁”。
乙对甲说:
“当我的岁数将来是你现在的岁数时,你将61岁”。
求甲乙现在的岁数各是多少?
十一、行船问题
【含义】行船问题也就是与航行有关的问题。
解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】(顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
顺水速=船速×2-逆水速=逆水速+水速×2
逆水速=船速×2-顺水速=顺水速-水速×2
【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?
解由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25(千米)
船的逆水速为25-15=10(千米)
船逆水行这段路程的时间为320÷10=32(小时)
答:
这只船逆水行这段路程需用32小时。
例2甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?
解由题意得甲船速+水速=360÷10=36
甲船速-水速=360÷18=20
可见(36-20)相当于水速的2倍,
所以,水速为每小时(36-20)÷2=8(千米)
又因为,乙船速-水速=360÷15,
所以,乙船速为360÷15+8=32(千米)
乙船顺水速为32+8=40(千米)
所以,乙船顺水航行360千米需要
360÷40=9(小时)
答:
乙船返回原地需要9小时。
例3一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?
解这道题可以按照流水问题来解答。
(1)两城相距多少千米?
(576-24)×3=1656(千米)
(2)顺风飞回需要多少小时?
1656÷(576+24)=2.76(小时)
列成综合算式
[(576-24)×3]÷(576+24)
=2.76(小时)
答:
飞机顺风飞回需要2.76小时。
十二、?
列车问题
【含义】这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。
【数量关系】火车过桥:
过桥时间=(车长+桥长)÷车速
火车追及:
追及时间=(甲车长+乙车长+距离)
÷(甲车速-乙车速)
火车相遇:
相遇时间=(甲车长+乙车长+距离)
÷(甲车速+乙车速)
【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。
这列火车长多少米?
解火车3分钟所行的路程,就是桥长与火车车身长度的和。
(1)火车3分钟行多少米?
900×3=2700(米)
(2)这列火车长多少米?
2700-2400=300(米)
列成综合算式900×3-2400=300(米)
答:
这列火车长300米。
例2一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?
解火车过桥所用的时间是2分5秒=125秒,所走的路程是(8×125)米,这段路程就是(200米+桥长),所以,桥长为
8×125-200=800(米)
答:
大桥的长度是800米。
例3一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?
解从追上到追过,快车比慢车要多行(225+140)米,而快车比慢车每秒多行(22-17)米,因此,所求的时间为
(225+140)÷(22-17)=73(秒)
答:
需要73秒。
例4一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?
解如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。
150÷(22+3)=6(秒)
答:
火车从工人身旁驶过需要6秒钟。
例5一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。
求这列火车的车速和车身长度各是多少?
解车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。
可知火车在(88-58)秒的时间内行驶了(2000-1250)米的路程,因此,火车的车速为每秒
(2000-1250)÷(88-58)=25(米)
进而可知,车长和桥长的和为(25×58)米,
因此,车长为25×58-1250=200(米)
答:
这列火车的车速是每秒25米,车身长200米。
十三、时钟问题
【含义】就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。
时钟问题可与追及问题相类比。
【数量关系】分针的速度是时针的12倍,
二者的速度差为11/12。
通常按追及问题来对待,也可以按差倍问题来计算。
【解题思路和方法】变通为“追及问题”后可以直接利用公式。
例1从时针指向4点开始,再经过多少分钟时针正好与分针重合?
解钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。
每分钟分针比时针多走(1-1/12)=11/12格。
4点整,时针在前,分针在后,两针相距20格。
所以
分针追上时针的时间为20÷(1-1/12)≈22(分)
答:
再经过22分钟时针正好与分针重合。
例2四点和五点之间,时针和分针在什么时候成直角?
解钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。
四点整的时候,分针在时针后(5×4)格,如果分针在时针后与它成直角,那么分针就要比时针多走(5×4-15)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5×4+15)格。
再根据1分钟分针比时针多走(1-1/12)格就可以求出二针成直角的时间。
(5×4-15)÷(1-1/12)≈6(分)
(5×4+15)÷(1-1/12)≈38(分)
答:
4点06分及4点38分时两针成直角。
例3六点与七点之间什么时候时针与分针重合?
解六点整的时候,分针在时针后(5×6)格,分针要与时针重合,就得追上时针。
这实际上是一个追及问题。
(5×6)÷(1-1/12)≈33(分)
答:
6点33分的时候分针与时针重合。
十四、?
盈亏问题
【含义】根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。
【数量关系】一般地说,在两次分配中,如果一次盈,一次亏,则有:
参加分配总人数=(盈+亏)÷分配差
如果两次都盈或都亏,则有:
参加分配总人数=(大盈-小盈)÷分配差
参加分配总人数=(大亏-小亏)÷分配差
【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。
问有多少小朋友?
有多少个苹果?
解按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系:
(1)有小朋友多少人?
(11+1)÷(4-3)=12(人)
(2)有多少个苹果?
3×12+11=47(个)
答:
有小朋友12人,有47个苹果。
例2修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。
这条路全长多少米?
解题中原定完成任务的天数,就相当于“参加分配的总人数”,按照“参加分配的总人数=(大亏-小亏)÷分配差”的数量关系,可以得知
原定完成任务的天数为
(260×8-300×4)÷(300-260)=22(天)
这条路全长为300×(22+4)=7800(米)
答:
这条路全长7800米。
例3学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。
问有多少车?
多少人?
解本题中的车辆数就相当于“参加分配的总人数”,于是就有
(1)有多少车?
(30-0)÷(45-40)=6(辆)
(2)有多少人?
40×6+30=270(人)
答:
有6辆车,有270人。
十五、工程问题
【含义】工程问题主要研究工作量、工作效率和工作时间三者之间的关系。
这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。
【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
工作量=工作效率×工作时间
工作时间=工作量÷工作效率
工作时间=总工作量÷(甲工作效率+乙工作效率)
【解题思路和方法】变通后可以利用上述数量关系的公式。
例1一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?
解题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。
由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15)。
由此可以列出算式:
1÷(1/10+1/15)=1÷1/6=6(天)
答:
两队合做需要6天完成。
例2一批零件,甲独做6小时完成,乙独做8小时完成。
现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
解设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。
因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以
(1)每小时甲比乙多做多少零件?
24÷[1÷(1/6+1/8)]=7(个)
(2)这批零件共有多少个?
7÷(1/6-1/8)=168(个)
答:
这批零件共有168个。
解二上面这道题还可以用另一种方法计算:
两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3
由此可知,甲比乙多完成总工作量的4-3/4+3=1/7
所以,这批零件共有24÷1/7=168(个)
例3一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。
现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
解必须先求出各人每小时的工作效率。
如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是
60÷12=560÷10=660÷15=4
因此余下的工作量由乙丙合做还需要
(60-5×2)÷(6+4)=5(小时)
答:
还需要5小时才能完成。
例4一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。
当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?
解注(排)水问题是一类特殊的工程问题。
往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。
要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。
为此需要知道进水管、排水管的工作效率及总工作量(一池水)。
只要设某一个量为单位1,其余两个量便可由条件推出。
我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知
每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1
即一个排水管与每个进水管的工作效率相同。
由此可知
一池水的总工作量为1×4×5-1×5=15
又因为在2小时内,每个进水管的注水量为1×2,
所以,2小时内注满一池水
至少需要多少个进水管?
(15+1×2)÷(1×2)
=8.5≈9(个)
答:
至少需要9个进水管。
十六、正反比例问题
【含义】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例应用题是正比例意义和解比例等知识的综合运用。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
反比例应用题是反比例的意义和解比例等知识的综合运用。
【数量关系】判断正比例或反比例关系是解这类应用题的关键。
许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。
【解题思路和方法】解决这类问题的重要方法是:
把分率(倍数)转化为比,应用比和比例的性质去解应用题。
正反比例问题与前面讲过的倍比问题基本类似。
例1修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?
解由条件知,公路总长不变。
原已修长度∶总长度=1∶(1+3)=1∶4=3∶12
现已修长度∶总长度=1∶(1+2)=1∶3=4∶12
比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为300÷(4-3)×12=3600(米)
答:
这条公路总长3600米。
例2张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?
解做题效率一定,做题数量与做题时间成正比例关系
设91分钟可以做X应用题则有28∶4=91∶X
28X=91×4X=91×4÷28X=13
答:
91分钟可以做13道应用题。
例3孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?
解书的页数一定,每天看的页数与需要的天数成反比例关系
设X天可以看完,就有24∶36=X∶15
36X=24×15X=10
答:
10天就可以看完。
例4一个大矩形被分成六个小矩形,其中四个小矩形的面积如图所示,求大矩形的面积。
A
25
20
36
B
16
解由面积÷宽=长可知,当长一定时,面积与宽成正比,所以每一上下两个小矩形面积之比就等于它们的宽的正比。
又因为第一行三个小矩形的宽相等,第二行三个小矩形的宽也相等。
因此,
A∶36=20∶1625∶B=20∶16
解这两个比例,得A=45B=20
所以,大矩形面积为45+36+25+20+20+16=162
答:
大矩形的面积是162.
十七、?
按比例分配问题
【含义】所谓按比例分配,就是把一个数按照一定的比分成若干份。
这类题的已知条件一般有两种形式:
一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。
【数量关系】从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。
总份数=比的前后项之和
【解题思路和方法】先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。
例1学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?
解总份数为47+48+45=140
一班植树560×47/140=188(棵)
二班植树560×48/140=192(棵)
三班植树560×45/140=180(棵)
答:
一、二、三班分别植树188棵、192棵、180棵。
例2用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。
三条边的长各是多少厘米?
解3+4+5=1260×3/12=15(厘米)
60×4/12=20(厘米)
60×5/12=25(厘米)
答:
三角形三条边的长分别是15厘米、20厘米、25厘米。
例3从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。
解如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。
如果用按比例分配的方法解,则很容易得到
1/2∶1/3∶1/9=9∶6∶2
9+6+2=1717×9/17=9
17×6/17=617×2/17=2
答:
大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。
例4某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?
人数
80人
一共多少人?
对应的份数
12-8
8+