C语言迭代法详细讲解.docx
《C语言迭代法详细讲解.docx》由会员分享,可在线阅读,更多相关《C语言迭代法详细讲解.docx(18页珍藏版)》请在冰豆网上搜索。
C语言迭代法详细讲解
迭代法
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。
迭代法又分为精确迭代和近似迭代。
“二分法”和“牛顿迭代法”属于近似迭代法。
迭代算法是用计算机解决问题的一种基本方法。
它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
利用迭代算法解决问题,需要做好以下三个方面的工作:
一、确定迭代变量。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?
这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
迭代过程的控制通常可分为两种情况:
一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。
对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。
例1:
一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。
如果所有的兔子都不死去,问到第12个月时,该饲养场共有兔子多少只?
分析:
这是一个典型的递推问题。
我们不妨假设第1个月时兔子的只数为u1,第2个月时兔子的只数为u2,第3个月时兔子的只数为u3,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有
u1=1,u2=u1+u1×1=2,u3=u2+u2×1=4,……
根据这个规律,可以归纳出下面的递推公式:
un=un-1×2(n≥2)
对应un和un-1,定义两个迭代变量y和x,可将上面的递推公式转换成如下迭代关系:
y=x*2
x=y
让计算机对这个迭代关系重复执行11次,就可以算出第12个月时的兔子数。
参考程序如下:
cls
x=1
fori=2to12
y=x*2
x=y
nexti
printy
end
例2:
阿米巴用简单分裂的方式繁殖,它每分裂一次要用3分钟。
将若干个阿米巴放在一个盛满营养参液的容器内,45分钟后容器内充满了阿米巴。
已知容器最多可以装阿米巴220,220个。
试问,开始的时候往容器内放了多少个阿米巴?
请编程序算出。
分析:
根据题意,阿米巴每3分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到45分钟后充满容器,需要分裂45/3=15次。
而“容器最多可以装阿米巴2^20个”,即阿米巴分裂15次以后得到的个数是2^20。
题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第15次分裂之后的2^20个,倒推出第15次分裂之前(即第14次分裂之后)的个数,再进一步倒推出第13次分裂之后、第12次分裂之后、……第1次分裂之前的个数。
设第1次分裂之前的个数为x0、第1次分裂之后的个数为x1、第2次分裂之后的个数为x2、……第15次分裂之后的个数为x15,则有
x14=x15/2、x13=x14/2、……xn-1=xn/2(n≥1)
因为第15次分裂之后的个数x15是已知的,如果定义迭代变量为x,则可以将上面的倒推公式转换成如下的迭代公式:
x=x/2(x的初值为第15次分裂之后的个数2^20)
让这个迭代公式重复执行15次,就可以倒推出第1次分裂之前的阿米巴个数。
因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。
参考程序如下:
cls
x=2^20
fori=1to15
x=x/2
nexti
printx
end
ps:
java中幂的算法是Math.pow(2,20);返回double,稍微注意一下
例3:
验证谷角猜想。
日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:
对于任意一个自然数n,若n为偶数,则将其除以2;若n为奇数,则将其乘以3,然后再加1。
如此经过有限次运算后,总可以得到自然数1。
人们把谷角静夫的这一发现叫做“谷角猜想”。
要求:
编写一个程序,由键盘输入一个自然数n,把n经过有限次运算后,最终变成自然数1的全过程打印出来。
分析:
定义迭代变量为n,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:
当n为偶数时,n=n/2;当n为奇数时,n=n*3+1。
用QBASIC语言把它描述出来就是:
ifn为偶数then
n=n/2
else
n=n*3+1
endif
这就是需要计算机重复执行的迭代过程。
这个迭代过程需要重复执行多少次,才能使迭代变量n最终变成自然数1,这是我们无法计算出来的。
因此,还需进一步确定用来结束迭代过程的条件。
仔细分析题目要求,不难看出,对任意给定的一个自然数n,只要经过有限次运算后,能够得到自然数1,就已经完成了验证工作。
因此,用来结束迭代过程的条件可以定义为:
n=1。
参考程序如下:
cls
input"Pleaseinputn=";n
dountiln=1
ifnmod2=0then
rem如果n为偶数,则调用迭代公式n=n/2
n=n/2
print"—";n;
else
n=n*3+1
print"—";n;
endif
loop
end
迭代法开平方:
#include
#include
voidmain()
{
doublea,x0,x1;
printf("Inputa:
\n");
scanf("%lf",&a);//为什么在VC6.0中不能写成“scanf("%f",&a);”?
if(a<0)
printf("Error!
\n");
else
{
x0=a/2;
x1=(x0+a/x0)/2;
do
{
x0=x1;
x1=(x0+a/x0)/2;
}while(fabs(x0-x1)>=1e-6);
}
printf("Result:
\n");
printf("sqrt(%g)=%g\n",a,x1);
}
求平方根的迭代公式:
x1=1/2*(x0+a/x0)。
算法:
1.先自定一个初值x0,作为a的平方根值,在我们的程序中取a/2作为a的初值;利用迭代公式求出一个x1。
此值与真正的a的平方根值相比,误差很大。
2.把新求得的x1代入x0中,准备用此新的x0再去求出一个新的x1.
3.利用迭代公式再求出一个新的x1的值,也就是用新的x0又求出一个新的平方根值x1,此值将更趋近于真正的平方根值。
4.比较前后两次求得的平方根值x0和x1,如果它们的差值小于我们指定的值,即达到我们要求的精度,则认为x1就是a的平方根值,去执行步骤5;否则执行步骤2,即循环进行迭代。
迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。
设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:
(1)选一个方程的近似根,赋给变量x0;
(2)将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;
(3)当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤
(2)的计算。
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。
上述算法用C程序的形式表示为:
【算法】迭代法求方程的根
{x0=初始近似根;
do{
x1=x0;
x0=g(x1);/*按特定的方程计算新的近似根*/
}while(fabs(x0-x1)>Epsilon);
printf(“方程的近似根是%f\n”,x0);
}
迭代算法也常用于求方程组的根,令
X=(x0,x1,…,xn-1)
设方程组为:
xi=gi(X)(I=0,1,…,n-1)
则求方程组根的迭代算法可描述如下:
【算法】迭代法求方程组的根
{for(i=0;i
x=初始近似根;
do{
for(i=0;i
y=x;
for(i=0;i
x=gi(X);
for(delta=0.0,i=0;i
if(fabs(y-x)>delta)delta=fabs(y-x);
}while(delta>Epsilon);
for(i=0;i
printf(“变量x[%d]的近似根是%f”,I,x);
printf(“\n”);
}
具体使用迭代法求根时应注意以下两种可能发生的情况:
(1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;
(2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。
递归
递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。
能采用递归描述的算法通常有这样的特征:
为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。
特别地,当规模N=1时,能直接得解。
【问题】编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。
斐波那契数列为:
0、1、1、2、3、……,即:
fib(0)=0;
fib
(1)=1;
fib(n)=fib(n-1)+fib(n-2)(当n>1时)。
写成递归函数有:
intfib(intn)
{if(n==0)return0;
if(n==1)return1;
if(n>1)returnfib(n-1)+fib(n-2);
}
递归算法的执行过程分递推和回归两个阶段。
在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。
例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。
也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n-2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。
依次类推,直至计算fib
(1)和fib(0),分别能立即得到结果1和0。
在递推阶段,必须要有终止递归的情况。
例如在函数fib中,当n为1和0的情况。
在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib
(1)和fib(0)后,返回得到fib
(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。
在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。
在一系列“简单问题”层,它们各有自己的参数和局部变量。
由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。
当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。
例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。
【问题】组合问题
问题描述:
找出从自然数1、2、……、n中任取r个数的所有组合。
例如n=5,r=3的所有组合为:
(1)5、4、3
(2)5、4、2(3)5、4、1
(4)5、3、2(5)5、3、1(6)5、2、1
(7)4、3、2(8)4、3、1(9)4、2、1
(10)3、2、1
分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。
设函数为voidcomb(intm,intk)为找出从自然数1、2、……、m中任取k个数的所有组合。
当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。
这就将求m个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。
设函数引入工作数组a[]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[]中的一个组合输出。
第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。
细节见以下程序中的函数comb。
【程序】
#include
#defineMAXN100
inta[MAXN];
voidcomb(intm,intk)
{inti,j;
for(i=m;i>=k;i--)
{a[k]=i;
if(k>1)
comb(i-1,k-1);
else
{for(j=a[0];j>0;j--)
printf(“%4d”,a[j]);
printf(“\n”);
}
}
}
voidmain()
{a[0]=3;
comb(5,3);
}
【问题】背包问题
问题描述:
有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。
设n件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。
采用递归寻找物品的选择方案。
设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[],该方案的总价值存于变量maxv。
当前正在考察新方案,其物品选择情况保存于数组cop[]。
假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。
算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。
因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。
对于第i件物品的选择考虑有两种可能:
(1)考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。
选中后,继续递归去考虑其余物品的选择。
(2)考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。
按以上思想写出递归算法如下:
try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)
{/*考虑物品i包含在当前方案中的可能性*/
if(包含物品i是可以接受的)
{将物品i包含在当前方案中;
if(i
try(i+1,tw+物品i的重量,tv);
else
/*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/
以当前方案作为临时最佳方案保存;
恢复物品i不包含状态;
}
/*考虑物品i不包含在当前方案中的可能性*/
if(不包含物品i仅是可男考虑的)
if(i
try(i+1,tw,tv-物品i的价值);
else
/*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/
以当前方案作为临时最佳方案保存;
}
为了理解上述算法,特举以下实例。
设有4件物品,它们的重量和价值见表:
物品0123
重量5321
价值4431
并设限制重量为7。
则按以上算法,下图表示找解过程。
由图知,一旦找到一个解,算法就进一步找更好的佳。
如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。
按上述算法编写函数和程序如下:
【程序】
#include
#defineN100
doublelimitW,totV,maxV;
intoption[N],cop[N];
struct{doubleweight;
doublevalue;
}a[N];
intn;
voidfind(inti,doubletw,doubletv)
{intk;
/*考虑物品i包含在当前方案中的可能性*/
if(tw+a.weight<=limitW)
{cop=1;
if(i
else
{for(k=0;k
option[k]=cop[k];
maxv=tv;
}
cop=0;
}
/*考虑物品i不包含在当前方案中的可能性*/
if(tv-a.value>maxV)
if(i
else
{for(k=0;k
option[k]=cop[k];
maxv=tv-a.value;
}
}
voidmain()
{intk;
doublew,v;
printf(“输入物品种数\n”);
scanf((“%d”,&n);
printf(“输入各物品的重量和价值\n”);
for(totv=0.0,k=0;k
{scanf(“%1f%1f”,&w,&v);
a[k].weight=w;
a[k].value=v;
totV+=V;
}
printf(“输入限制重量\n”);
scanf(“%1f”,&limitV);
maxv=0.0;
for(k=0;kfind(0,0.0,totV);
for(k=0;k
if(option[k])printf(“%4d”,k+1);
printf(“\n总价值为%.2f\n”,maxv);
}
作为对比,下面以同样的解题思想,考虑非递归的程序解。
为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。
对物品i的考察有这样几种情况:
当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。
同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。
对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。
【程序】
#include
#defineN100
doublelimitW;
intcop[N];
structele{doubleweight;
doublevalue;
}a[N];
intk,n;
struct{int;
doubletw;
doubletv;
}twv[N];
voidnext(inti,doubletw,doubletv)
{twv.=1;
twv.tw=tw;
twv.tv=tv;
}
doublefind(structele*a,intn)
{inti,k,f;
doublemaxv,tw,tv,totv;
maxv=0;
for(totv=0.0,k=0;k
totv+=a[k].value;
next(0,0.0,totv);
i=0;
While(i>=0)
{f=twv.;
tw=twv.tw;
tv=twv.tv;
switch(f)
{case1:
twv.++;
if(tw+a.weight<=limitW)
if(i
{next(i+1,tw+a.weight,tv);
i++;
}
else
{maxv=tv;
for(k=0;k
cop[k]=twv[k].!
=0;
}
break;
case0:
i--;
break;
default:
twv.=0;
if(tv-a.value>maxv)
if(i
{next(i+1,tw,tv-a.value);
i++;
}
else
{maxv=tv-a.value;
for(k=0;k
cop[k]=twv[k].!
=0;
}
break;
}
}
returnmaxv;
}
voidmain()
{doublemaxv;
printf(“输入物品种数\n”);
scanf((“%d”,&n);
printf(“输入限制重量\n”);
scanf(“%1f”,&limitW);
printf(“输入各物品的重量和价值\n”);
for(k=0;k
scanf(“%1f%1f”,&a[k].weight,&a[k].v