大学物理实验报告答案大全实验数据.docx

上传人:b****9 文档编号:25795253 上传时间:2023-06-14 格式:DOCX 页数:120 大小:364.72KB
下载 相关 举报
大学物理实验报告答案大全实验数据.docx_第1页
第1页 / 共120页
大学物理实验报告答案大全实验数据.docx_第2页
第2页 / 共120页
大学物理实验报告答案大全实验数据.docx_第3页
第3页 / 共120页
大学物理实验报告答案大全实验数据.docx_第4页
第4页 / 共120页
大学物理实验报告答案大全实验数据.docx_第5页
第5页 / 共120页
点击查看更多>>
下载资源
资源描述

大学物理实验报告答案大全实验数据.docx

《大学物理实验报告答案大全实验数据.docx》由会员分享,可在线阅读,更多相关《大学物理实验报告答案大全实验数据.docx(120页珍藏版)》请在冰豆网上搜索。

大学物理实验报告答案大全实验数据.docx

大学物理实验报告答案大全实验数据

 

大学物理实验报告答案大全(实验数据及思考题答案全包括)

 

伏安法测电阻

实验目的

(1)利用伏安法测电阻。

(2)验证欧姆定律。

(3)学会间接测量量不确定度的计算;进一步掌握有效数字的概念。

实验方法原理

根据欧姆定律,R

=

U

I

,如测得U和I则可计算出R。

值得注意的是,本实验待测电阻有两只,

一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。

实验装置

待测电阻两只,0~5mA电流表1只,0-5V电压表1只,0~50mA电流表1只,0~10V电压表一

只,滑线变阻器1只,DF1730SB3A稳压源1台。

实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。

必要时,可提示学

生参照第2章中的第2.4一节的有关内容。

分压电路是必须要使用的,并作具体提示。

(1)根据相应的电路图对电阻进行测量,记录U值和I值。

对每一个电阻测量3次。

(2)计算各次测量结果。

如多次测量值相差不大,可取其平均值作为测量结果。

(3)如果同一电阻多次测量结果相差很大,应分析原因并重新测量。

数据处理

 

(1)由∆U

 

=Umax⋅1.5%,得到∆U1=0.15V,∆U2=0.075V

 

(2)由∆I

=Imax⋅1.5%,得到∆I1=0.075mA,∆I2=0.75mA;

 

(3)再由uR

=R(

 

3V

)+(

 

3I

,求得uR1

=9⋅101Ω,uR2=1Ω;

(4)结果表示R1

=(2.92±0.09)⋅103Ω,R2=(44±1)Ω

光栅衍射

实验目的

(1)了解分光计的原理和构造。

(2)学会分光计的调节和使用方法。

(3)观测汞灯在可见光范围内几条光谱线的波长

实验方法原理

测量次数1

2

3

U1/V5.4

6.9

8.5

I1/mA2.00

2.60

3.20

R1/Ω2700

2654

2656

测量次数1

2

3

U2/V2.08

2.22

2.50

I2/mA38.0

42.0

47.0

R2/Ω54.7

52.9

53.2

∆U2

∆I2

 

若以单色平行光垂直照射在光栅面上,按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定:

 

(a+b)sinψk

=dsinψk=±kλ

如果人射光不是单色,则由上式可以看出,光的波长不同,其衍射角也各不相同,于是复色光将被分解,而在中央k=0、

ψ=0处,各色光仍重叠在一起,形成中央明条纹。

在中央明条纹两侧对称地分布着k=1,2,3,…级光谱,各级光谱

线都按波长大小的顺序依次排列成一组彩色谱线,这样就把复色光分解为单色光。

如果已知光栅常数,用分光计测出k

级光谱中某一明条纹的衍射角ψ,即可算出该明条纹所对应的单色光的波长λ。

实验步骤

(1)调整分光计的工作状态,使其满足测量条件。

(2)利用光栅衍射测量汞灯在可见光范围内几条谱线的波长。

①由于衍射光谱在中央明条纹两侧对称地分布,为了提高测量的准确度,测量第k级光谱时,应测出+k级和-k

级光谱线的位置,两位置的差值之半即为实验时k取1。

②为了减少分光计刻度盘的偏心误差,测量每条光谱线时,刻度盘上的两个游标都要读数,然后取其平均值(角

游标的读数方法与游标卡尺的读数方法基本一致)。

③为了使十字丝对准光谱线,可以使用望远镜微调螺钉12来对准。

④测量时,可将望远镜置最右端,从-l级到+1级依次测量,以免漏测数据。

数据处理

 

(1)与公认值比较

计算出各条谱线的相对误

 

λ0为公认值。

(2)计算出紫色谱线波长的不确定度

⎣−⎣x

⎣0

其中

u(λ)=

⎡∂((a+b)sinϕ)

2

u(ϕ)⎥=(a+b)|cosϕ|u(ϕ)

=

1

600

⋅cos15.092�⋅

ð

60⋅180

=0.467nm;U=2×u(λ)=0.9

nm

最后结果为:

λ=(433.9±0.9)nm

1.

当用钠光(波长λ=589.0nm)垂直入射到1mm内有500条刻痕的平面透射光栅上时,试问最多能看到第几级光谱?

请说明理由。

答:

由(a+b)sinφ=kλ

∵φ最大为90º

 

-6-9

 

-6

得k={(a+b)/λ}sinφ

所以sinφ=1

-9

最多只能看到三级光谱。

2.

当狭缝太宽、太窄时将会出现什么现象?

为什么?

答:

狭缝太宽,则分辨本领将下降,如两条黄色光谱线分不开。

狭缝太窄,透光太少,光线太弱,视场太暗不利于测量。

3.为什么采用左右两个游标读数?

左右游标在安装位置上有何要求?

答:

采用左右游标读数是为了消除偏心差,安装时左右应差180º。

谱线

游标

左1级

(k=-1)

右1级

(k=+1)

φ

λ/nm

λ0/nm

E

黄l(明)

102°45′

62°13′

20.258°

577.1

579.0

0.33%

282°48′

242°18′

黄2(明)

102°40′

62°20′

20.158°

574.4

577.9

0.45%

282°42′

242°24′

绿(明)

101°31′

63°29′

19.025°

543.3

546.1

0.51%

281°34′

243°30′

紫(明)

97°35′

67°23′

15.092°

433.9

435.8

0.44%

277°37′

247°28′

∂ϕ

又∵a+b=1/500mm=2*10m,

λ=589.0nm=589.0*10m

∴k=2*10/589.0*10=3.4

 

光电效应

实验目的

(1)观察光电效现象,测定光电管的伏安特性曲线和光照度与光电流关系曲线;测定截止电压,并通过现象了解其物

理意义。

(2)练习电路的连接方法及仪器的使用;学习用图像总结物理律。

实验方法原理

(1)光子打到阴极上,若电子获得的能量大于逸出功时则会逸出,在电场力的作用下向阳极运动而形成正向

电流。

在没达到饱和前,光电流与电压成线性关系,接近饱和时呈非线性关系,饱和后电流不再增加。

22

22-2

(3)若给光电管接反向电压u反,在eU反

到阳极而形成光电流,当继续增大电压U反,由于电场力做负功使电子减速,当使其到达阳极前速度刚好为零时U反=US,

此时所观察到的光电流为零,由此可测得此光电管在当前光源下的截止电压US。

实验步骤

(1)按讲义中的电路原理图连接好实物电路图;

(2)测光电管的伏安特性曲线:

①先使正向电压加至30伏以上,同时使光电流达最大(不超量程),

②将电压从0开始按要求依次加大做好记录;

(3)测照度与光电流的关系:

①先使光电管距光源20cm处,适当选择光源亮度使光电流达最大(不超量程);

②逐渐远离光源按要求做好记录;

实验步骤

(4)测光电管的截止电压:

①将双向开关换向;

②使光电管距光源20cm处,将电压调至“0”,适当选择光源亮度使光电流达最大(不超量程),记录此时的光

电流I0,然后加反向电压使光电流刚好为“0”,记下电压值US;

③使光电管远离光源(光源亮度不变)重复上述步骤作好记录。

数据处理

(1)伏安特性曲线

 

(2)照度与光电流的关系

 

-10

 

0

 

10

 

20

 

30

 

40

 

50

 

伏安特性曲线

 

照度与光电

流曲线

(3)零电压下的光电流及截止电压与照度的关系

L/cm20.0

25.0

30.0

35.0

40.0

50.0

60.0

70.0

80.0

0.002

2

1/L

5

0.001

6

0.001

1

0.000

8

0.000

6

0.000

4

0.000

3

0.000

2

0.000

15

I/µA19.97

12.54

6.85

4.27

2.88

1.51

0.87

0.53

0.32

25

20

15

10

5

0

U/V

-0.6

4

0

1.0

2.0

4.0

6.0

8.0

10.0

20.0

30.0

40.0

I/mA

0

2.96

5.68

10.3

4

16.8

5

18.7

8

19.9

0

19.9

2

19.9

4

19.9

5

19.9

7

(2)电光源发光后,其照度随距光源的距离的平方成(r)反比即光电管得到的光子数与r成反比,因此打出的电子

数也与r成反比,形成的饱和光电流也与r成反比,即I∝r。

 

1.临界截止电压与照度有什么关系?

从实验中所得的结论是否同理论一致?

如何解释光的波粒二象性?

 

答:

临界截止

电压与照度无关,实验结果与理论相符。

光具有干涉、衍射的特性,说明光具有拨动性。

从光电效应现象上分析,光又具有粒子性,由爱因斯坦方程来描

2

2.可否由Us′ν曲线求出阴极材料的逸出功?

答:

可以。

由爱因斯坦方程hυ=e|us|+hυo可求出斜率Δus/Δυ=h/e

和普朗克常数,还可以求出截距(h/e)υo,再由截距求出光电管阴极材料的红限

υo,从而求出逸出功A=hυo。

光的干涉—牛顿环

实验目的

(1)观察等厚干涉现象及其特点。

(2)学会用干涉法测量透镜的曲率半径与微小厚度。

实验方法原理

利用透明薄膜(空气层)上下表面对人射光的依次反射,人射光的振幅将分成振幅不同且有一定光程差的两部分,

这是一种获得相干光的重要途径。

由于两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度,同一条干涉条纹所

对应的薄膜厚度相同,这就是等厚干涉。

将一块曲率半径R较大的平凸透镜的凸面置于光学平板玻璃上,在透镜的凸

面和平板玻璃的上表面间就形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。

当平行的单色光垂直入射时,

入射光将在此薄膜上下两表面依次反射,产生具有一定光程差的两束相干光。

因此形成以接触点为中心的一系列明暗交

22

4(m−n)⎣

y

4(m−n)⎣

实验步骤

(1)转动读数显微镜的测微鼓轮,熟悉其读数方法;调整目镜,使十字叉丝清晰,并使其水平线与主尺平行(判断的

方法是:

转动读数显微镜的测微鼓轮,观察目镜中的十字叉丝竖线与牛顿环相切的切点连线是否始终与移动方向平行)。

(2)为了避免测微鼓轮的网程(空转)误差,整个测量过程中,轮只能向一个方向旋转。

尽量使叉丝的竖线对准暗

干涉条纹中央时才读数。

(3)应尽量使叉丝的竖线对准暗干涉条纹中央时才读数。

(4)测量时,隔一个暗环记录一次数据。

(5)由于计算R时只需要知道环数差m-n,因此以哪一个环作为第一环可以任选,但对任一暗环其直径必须是对

应的两切点坐标之差。

数据处理

环的级数

m

24

22

20

18

16

环的位置/mm

21.391

21.552

21.708

21.862

22.041

28.449

28.320

28.163

27.970

27.811

环的直径/mm

Dm

7.058

6.768

6.455

6.108

5.770

环的级数

n

14

12

10

8

6

环的位置/mm

22.237

22.435

22.662

22.881

23.162

27.632

27.451

27.254

26.965

26.723

环的直径/mm

Dn

5.395

5.016

4.592

4.084

3.561

20.709

20.646

20.581

20.629

20.612

20.635

875.4

0.12

0.6%

L/cm

20.0

25.0

30.0

35.0

40.0

50.0

60.0

70.0

I0/µA

1.96

1.85

1.06

0.85

0.64

0.61

0.58

0.55

US/V

0.64

0.63

0.65

0.66

0.62

0.64

0.65

0.63

述:

hν=(1/2)mvmax+A。

替的同心圆环——牛顿环。

透镜的曲率半径为:

R=Dm−Dn=

在鼓应

 

c

R

 

2

⎛u(y)⎞⎛u(m)⎞⎛u(n)⎞

⎜⎜y⎟⎟+⎜m−n⎟+⎜m−n⎟

 

2

 

⎝20.635⎠

 

2

 

uc(R)=R⋅

uc(R)

R

=5.25mm;U

=2×uc(R)=11mm

R=(R±U)=(875±11)mm

1.透射光牛顿环是如何形成的?

如何观察?

画出光路示意图。

答:

光由牛顿环装置下方射入,在

空气层上下两表面对入射光的依次反射,形成干涉条纹,由上向下观察。

2.在牛顿环实验中,假如平玻璃板上有微小凸起,则凸起处空气薄膜厚度减小,导致等厚干涉条纹

发生畸变。

试问这时的牛顿环(暗)将局部内凹还是局部外凸?

为什么?

答:

将局部外凸,因为同一条纹对应的薄膜厚度相同。

3.用白光照射时能否看到牛顿环和劈尖干涉条纹?

此时的条纹有何特征?

答:

用白光照射能看到干涉条纹,特征是:

彩色的条纹,但条纹数有限。

双棱镜干涉

实验目的

(1)观察双棱镜干涉现象,测量钠光的波长。

(2)学习和巩固光路的同轴调整。

实验方法原理

双棱镜干涉实验与双缝实验、双面镜实验等一样,都为光的波动学说的建立起过决定性作用,同时也是测量光波

波长的一种简单的实验方法。

双棱镜干涉是光的分波阵面干涉现象,由S发出的单色光经双棱镜折射后分成两列,相当

于从两个虚光源S1和S2射出的两束相干光。

这两束光在重叠区域内产生干涉,在该区域内放置的测微目镜中可以观察

到干涉条纹。

根据光的干涉理论能够得出相邻两明(暗)条纹间的距离为∆x

=

d

D

⎣,即可有⎣=

d

D

∆x其中d为两

个虚光源的距离,用共轭法来测,即d

=d1d2

;D为虚光源到接收屏之间的距离,在该实验中我们测的是狭缝到测

∆x

 

实验步骤

(1)仪器调节

①粗调

将缝的位置放好,调至坚直,根据缝的位置来调节其他元件的左右和高低位置,使各元件中心大致等高。

②细调

根据透镜成像规律用共轭法进行调节。

使得狭缝到测微目镜的距离大于透镜的四倍焦距,这样通过移动透镜能够在

测微目镜处找到两次成像。

首先将双棱镜拿掉,此时狭缝为物,将放大像缩小像中心调至等高,然后使测微目镜能够接

收到两次成像,最后放入双棱镜,调双棱镜的左右位置,使得两虚光源成像亮度相同,则细调完成。

各元件中心基本达

到同轴。

(2)观察调节干涉条纹

调出清晰的干涉条纹。

视场不可太亮,缝不可太宽,同时双棱镜棱脊与狭缝应严格平行。

取下透镜,为方便调节可

先将测微目镜移至近处,待调出清晰的干涉条纹后再将测微目镜移到满足大于透镜四倍焦距的位置。

(3)随着D的增加观察干涉条纹的变化规律。

(4)测量

①测量条纹间距∆x

②用共轭法测量两虚光源S1和S2的距离d

 

2

=⎛⎜0.12⎞⎟+8.9⋅10−8=0.6%

⎝⎠⎝⎠⎝⎠

 

③测量狭缝到测微目镜叉丝的距离D

数据处理

测∆x数据记录

mm

次数

1

2

3

4

5

6

条纹位置

起始位置a

8.095

3.554

8.030

3.550

8.184

3.593

终了位置a′

3.575

8.035

3.573

8.100

3.680

8.080

被测条纹数

10

10

10

10

10

10

|a-a′|

4.520

4.481

4.457

4.550

4.504

4.487

∆x

0.4520

0.4481

0.4457

0.4550

0.4504

0.4487

∆x=0.44998mm

测d数据记录

mm

次数

1

2

3

4

5

6

放大像间距d1

a1

7.560

5.771

7.538

5.755

7.520

5.735

a1′

5.774

7.561

5.766

7.549

5.753

7.515

|a1-a1′|

1.786

1.790

1.772

1.794

1.767

1.780

缩小像间距d2

a2

7.357

6.933

7.381

6.910

7.355

6.951

a2′

6.965

7.360

6.968

7.330

6.940

7.360

|a2-a2′|

0.410

0.428

0.413

0.420

0.415

0.409

d1=1.7915mm;d2=0.4158mm

测D数据记录

mm

狭缝位置b

1

 

∆x的不确定度

-29

(1)

测微目镜差丝位置b′

660

D=|b-b′|

659

uA(∆x)=0.001329mm;uB(∆x)=

∆仪

3

=0.005770mm;

22

(2)求d1与d2的不确定度

uA(d1)=0.004288mm;uA(d2)=0.002915mm;

uB(d1)=0.007mm;uB(d2)=0.005mm;uB(d)=

∆仪

3

=0.005770mm;

22

22

(3)求D的不确定度

u(D)=1mm。

(4)波长的合成相对不确定度

uc(⎣)

⎝∆x⎠⎝d⎠⎝D⎠

222

−4

2

其中⎜⎟=

⎝d⎠

(5)测量结果

4⎝d1⎠

2

4⎝d2⎠

2

 

⎛u(∆x)⎞

⎛u(d)⎞

⎛u(D)⎞

=⎜

⎟+⎜

⎟+⎜

⎟=4.128⋅10mm;

⎛u(d)⎞

1⎛u(d1)⎞

⎜⎟+

1⎛u(d2)⎞

⎜⎟=1.374⋅10−5mm。

 

1

 

由⎣

 

=

 

d

D

 

∆x求得⎣=5.87731⋅10-4mm。

2

uc(⎣)=2.427⋅10−7mm;包含因子k=2时,⎣的扩展不确定度U=2uc(⎣)结果表达式为

⎣=⎣+U=(5.877±0.005)⋅10−4mm。

1.

测量前仪器调节应达到什么要求?

怎样才能调节出清晰的干涉条纹?

2.

答:

共轴,狭逢和棱背平行与测微目镜共轴,并适当调节狭逢的

宽度。

2.本实验如何测得两虚光源的距离d?

还有其他办法吗?

1/2

3.狭缝与测微目镜的距离及与双棱镜的距离改变时,条纹的间距和

数量有何变化?

答:

狭缝和测微目镜的距离越近,条纹的间距越窄,数量不变,狭缝

和双棱镜的距离越近,条纹间距越宽,数量越小。

4.在同一图内画出相距为d虚光源的S1和S2所成的像d1和

d2的光路图。

测薄透镜的焦距

实验目的

(1)

(2)

(3)

(4)

掌握测薄透镜焦距的几种方法;

掌握简单光路的分析和调整的方法;

了解透镜成像原理,掌握透镜成像规律;

进一步学习不确定度的计算方法。

实验方法原理

(1)自准法

当光(物)点在凸透镜的焦平面上时,光点发出的光线经过透镜变成平行光束,再经过在透镜另一侧的平面镜反射后

 

又汇聚在原焦平面上且与发光点(物点)对称。

(2)物距像距法

测出物距(u)与相距(v)代入公式:

1/u+1/v=1/f可求f

(3)共轭法

保持物与屏的距离(L)不变,移动透镜,移动的距离为(e),其中一次成放大像另一次成缩小像,放大像1/u+1/v=1/

22

 

(4)凹透镜焦距的测量

利用光路可逆原理,将凸透镜所成的实像作为凹透镜的物,即可测出凹透镜成实像的物距和像距,代入公式1/u+

1/v=1/f可求出焦距f。

实验步骤

本实验为简单设计性实验,具体实验步骤由学生自行确定,必要时课建议学生按照实验原理及方法中的顺序作试

答:

d=(d1*d2)或利用波长λ已知的激光作光源,则d=(D/Δx)λ

f,缩小像1/(u+e)+1/(v-e)=1/f,由于u+v=L,所以f=(L-e)/4L。

 

验。

要求学生自行设计的能直接反映出测量结果的数据记录表格。

数据处理

(1)自准法,物距像距法,则凹透镜焦距三个试验将所测数据及计算结果填写在自行设计的表格中。

(2)对共轭法的测量数据及处理实例

测量数据记录表

 

①不确定度的计算过程:

6

uA(e)=

1

i−e)

6(6−1)

2

=0.047cm

uB(e)=

0.30cm

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 预防医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1