新人教版数学七年级一元一次方程解应用题分类.docx

上传人:b****7 文档编号:25601448 上传时间:2023-06-10 格式:DOCX 页数:47 大小:351.42KB
下载 相关 举报
新人教版数学七年级一元一次方程解应用题分类.docx_第1页
第1页 / 共47页
新人教版数学七年级一元一次方程解应用题分类.docx_第2页
第2页 / 共47页
新人教版数学七年级一元一次方程解应用题分类.docx_第3页
第3页 / 共47页
新人教版数学七年级一元一次方程解应用题分类.docx_第4页
第4页 / 共47页
新人教版数学七年级一元一次方程解应用题分类.docx_第5页
第5页 / 共47页
点击查看更多>>
下载资源
资源描述

新人教版数学七年级一元一次方程解应用题分类.docx

《新人教版数学七年级一元一次方程解应用题分类.docx》由会员分享,可在线阅读,更多相关《新人教版数学七年级一元一次方程解应用题分类.docx(47页珍藏版)》请在冰豆网上搜索。

新人教版数学七年级一元一次方程解应用题分类.docx

新人教版数学七年级一元一次方程解应用题分类

新人教版初一数学一元一次方程的应用

1.列一元一次方程解应用题的一般步骤

(1)审题:

弄清题意.

(2)找出等量关系:

找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:

设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:

解所列的方程,求出未知数的值.(5)检验,写答案:

检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.

2.和差倍分问题

增长量=原有量×增长率现在量=原有量+增长量

3.等积变形问题

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

①圆柱体的体积公式V=底面积×高=S·h=

r2h

②长方体的体积V=长×宽×高=abc

4.数字问题

一般可设个位数字为a,十位数字为b,百位数字为c.

十位数可表示为10b+a,百位数可表示为100c+10b+a.

然后抓住数字间或新数、原数之间的关系找等量关系列方程.

5.市场经济问题

(1)商品利润=商品售价-商品成本价

(2)商品利润率=

×100%

(3)商品销售额=商品销售价×商品销售量

(4)商品的销售利润=(销售价-成本价)×销售量

(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.

6.行程问题:

路程=速度×时间时间=路程÷速度速度=路程÷时间

(1)相遇问题:

快行距+慢行距=原距

(2)追及问题:

快行距-慢行距=原距

(3)航行问题:

顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

7.工程问题:

工作量=工作效率×工作时间

完成某项任务的各工作量的和=总工作量=1

8.储蓄问题

利润=

×100%利息=本金×利率×期数

1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

 

2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

 

3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,

≈3.14).

 

4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.

 

5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:

3:

5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?

 

6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.

 

7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.

(1)某户八月份用电84千瓦时,共交电费30.72元,求a.

(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?

应交电费是多少元?

 

8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.

(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

 

答案

1.解:

设甲、乙一起做还需x小时才能完成工作.

根据题意,得

×

+(

+

)x=1

解这个方程,得x=

=2小时12分

答:

甲、乙一起做还需2小时12分才能完成工作.

2.解:

设x年后,兄的年龄是弟的年龄的2倍,

则x年后兄的年龄是15+x,弟的年龄是9+x.

由题意,得2×(9+x)=15+x

18+2x=15+x,2x-x=15-18

∴x=-3

答:

3年前兄的年龄是弟的年龄的2倍.

(点拨:

-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)

3.解:

设圆柱形水桶的高为x毫米,依题意,得

·(

)2x=300×300×80

x≈229.3

答:

圆柱形水桶的高约为229.3毫米.

4.解:

设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为

分.

过完第二铁桥所需的时间为

分.

依题意,可列出方程

+

=

解方程x+50=2x-50

得x=100

∴2x-50=2×100-50=150

答:

第一铁桥长100米,第二铁桥长150米.

5.解:

设这种三色冰淇淋中咖啡色配料为2x克,

那么红色和白色配料分别为3x克和5x克.

根据题意,得2x+3x+5x=50

解这个方程,得x=5

于是2x=10,3x=15,5x=25

答:

这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.

6.解:

设这一天有x名工人加工甲种零件,

则这天加工甲种零件有5x个,乙种零件有4(16-x)个.

根据题意,得16×5x+24×4(16-x)=1440

解得x=6

答:

这一天有6名工人加工甲种零件.

7.解:

(1)由题意,得

0.4a+(84-a)×0.40×70%=30.72

解得a=60

(2)设九月份共用电x千瓦时,则

0.40×60+(x-60)×0.40×70%=0.36x

解得x=90

所以0.36×90=32.40(元)

答:

九月份共用电90千瓦时,应交电费32.40元.

8.解:

按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,

设购A种电视机x台,则B种电视机y台.

(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程

1500x+2100(50-x)=90000

即5x+7(50-x)=300

2x=50

x=25

50-x=25

②当选购A,C两种电视机时,C种电视机购(50-x)台,

可得方程1500x+2500(50-x)=90000

3x+5(50-x)=1800

x=35

50-x=15

③当购B,C两种电视机时,C种电视机为(50-y)台.

可得方程2100y+2500(50-y)=90000

21y+25(50-y)=900,4y=350,不合题意

由此可选择两种方案:

一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.

(2)若选择

(1)中的方案①,可获利

150×25+250×15=8750(元)

若选择

(1)中的方案②,可获利

150×35+250×15=9000(元)

9000>8750故为了获利最多,选择第二种方案.

一元一次方程应用题是初一数学学习的重点,也是一个难点。

主要困难体现在两个方面:

一是难以从实际问题中找出相等关系,列出相应的方程;二是对数量关系稍复杂的方程,常常理不清楚基本量,也不知道如何用含未知数的式子来表示出这些基本量的相等关系,导致解题时无从下手。

事实上,方程就是一个含未知数的等式。

列方程解应用题,就是要将实际问题中的一些数量关系用这种含有未知数的等式的形式表示出来。

而在这种等式中的每个式子又都有自身的实际意义,它们分别表示题设中某一相应过程的数量大小或数量关系。

由此,解方程应用题的关键就是要“抓住基本量,找出相等关系”。

一、列方程解应用题的步骤:

⑴审题:

理解题意。

1、弄清题目中的对象,找出题目中代表着对象之间关系的句子和词;2、弄清题目中有什么,要我们干什么,找出有什么(已知)和干什么(未知)之间的关系;

从应用题来看一个题一般存在这两个以上的关系,这两关系一是题目中给出,二是题目中只给出一个,另一个关系是我们日常生活中常用到的一些等量关系(例如:

路程=速度×时间等)所以解应用题关键是找出题目的等量关系,先就要长到代表等量关系的句子和词语(如:

谁比谁多,谁比谁少,谁是谁的几倍,谁是谁的几分之几等)。

解题时常用横线画出代表等量关系的句子和词语。

⑵设元(未知数)。

①直接未知数:

题目中问什么设什么;②间接未知数:

先通过设未知数求出与与问题相关的量,然后再通过一些关系求出题目中的问题。

(往往二者兼用)。

一般来说,未知数越多,方程越易列,但越难解。

但一元一次方程一般都只设一个未知数列一个方程。

⑶用含未知数的代数式表示相关的量。

⑷列方程:

寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。

一般地,未知数个数与方程个数是相同的。

⑸解方程(6)检验:

一是检验是否使方程有意义,例如分母不为0等;二是检验是否使实际实际问题有意义(如;2/3个人等)。

(7)答题:

回答出题目所问。

二、常见的常识性等量关系及关键词语

(1)和、差、倍、分问题。

  此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。

审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。

  

(2)等积变形问题。

  此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:

①形状面积变了,周长没变;②原料体积=成品体积。

  (3)调配问题。

  从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

这类问题要搞清人数的变化,常见题型有:

①既有调入又有调出;

②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。

调配与比例问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等。

调配问题中关键是要认识清楚部分量、总量以及两者之间的关系。

在调配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系。

例14.甲、乙两书架各有若干本书,如果从乙架拿100本放到甲架上,那么甲架上的书比乙架上所剩的书多5倍,如果从甲架上拿100本书放到乙架上,两架所有书相等。

问原来每架上各有多少书?

讲评:

本题难点是正确设未知数,并用含未知数的代数式将另一书架上书的本数表示出来。

在调配问题中,调配后数量相等,即将原来多的一方多出的数量进行平分。

由题设中“从甲书架拿100本书到乙书架,两架书相等”,可知甲书架原有的书比乙书架上原有的书多200本。

故设乙架原有x本书,则甲架原有(x+200)本书。

从乙架拿100本放到甲架上,乙架剩下的书为(x-100)本,甲架书变为(x+200)+100本。

又甲架的书比乙架多5倍,即是乙架的六倍,有     (x+200)+100=6(x-100)∴x=180    x+200=380

例15.教室内共有灯管和吊扇总数为13个。

已知每条拉线管3个灯管或2个吊扇,共有这样的拉线5条,求室内灯管有多少个?

讲评:

这是一道对开关拉线的分配问题。

设灯管有x支,则吊扇有(13-x)个,灯管拉线为

条,吊扇拉线为

条,依题意“共有5条拉线”,有

+

=5∴x=9

例16.某车间22名工人参加生产一种螺母和螺丝。

每人每天平均生产螺丝120个或螺母200个,一个螺丝要配两个螺母,应分配多少名工人生产螺丝,多少名工人生产螺母,才能使每天生产的产品刚好配套?

讲评:

产品配套(工人调配)问题,要根据产品的配套关系(比例关系)正确地找到它们间得数量关系,并依此作相等关系列出方程。

本题中,设有x名工人生产螺母,生产螺母的个数为200x个,则有(22-x)人生产螺丝,生产螺丝的个数为120(22-x)个。

由“一个螺丝要配两个螺母”即“螺母的个数是螺丝个数的2倍”,有    200x=2×120(22-x)

 ∴x=12    22-x=10 

例17.地板砖厂的坯料由白土、沙土、石膏、水按25∶2∶1∶6的比例配制搅拌而成。

现已将前三种料称好,公5600千克,应加多少千克的水搅拌?

前三种料各称了多少千克?

讲评:

解决比例问题的一般方法是:

按比例设未知数,并根据题设中的相等关系列出方程进行求解。

本题中,由四种坯料比例25∶2∶1∶6,设四种坯料分别为25x、2x、x、6x千克,由前三种坯料共5600千克,有 25x+2x+x=5600

∴ x=20025x=5000                  2x=400  x=200  6x=1200 

例18.苹果若干个分给小朋友,每人m个余14个,每人9个,则最后一人得6个。

问小朋友有几人?

讲评:

这是一个分配问题。

设小朋友x人,每人分m个苹果余14个,苹果总数为mx+14,每人9个苹果最后一人6个,则苹果总数为9(x-1)+6。

苹果总数不变,有      

mx+14=9(x-1)+6 ∴x=

 ∵x、m均为整数∴9-m=1 x=17

例19.出口1吨猪肉可以换5吨钢材,7吨猪肉价格与4吨砂糖的价格相等,现有288吨砂糖,把这些砂糖出口,可换回多少吨钢材?

 

讲评:

本题可转换成一个比例问题。

由猪肉∶钢材=1∶5,猪肉∶砂糖=7∶4,得猪肉∶钢材∶砂糖=7∶35∶4,设可换回钢材x吨,则有   x∶288=35∶4   ∴x=2620

7.需设中间(间接)未知数求解的问题

一些应用题中,设直接未知数很难列出方程求解,而根据题中条件设间接未知数,却较容易列出方程,再通过中间未知数求出结果。

例20.甲、乙、丙、丁四个数的和是43,甲数的2倍加8,乙数的3倍,丙数的4倍,丁数的5倍减去4,得到的4个数却相等。

求甲、乙、丙、丁四个数。

讲评:

本题中要求4个量,在后面可用方程组求解。

若用一元一次方程求解,如果设某个数为未知数,其余的数用未知数表示很麻烦。

这里由甲、乙、丙、丁变化后得到的数相等,故设这个相等的数为x,则甲数为

,乙数为

,丙数为

,丁数为

,由四个数的和是43,有   

+

+

+

=43       ∴x=36

 ∴ 

=14     

=12       

=9       

=8

  例21.某县中学生足球联赛共赛10轮(即每队均需比赛10场),其中胜1场得3分,平1场得1分,负1场得0分。

向明中学足球队在这次联赛中所负场数比平场数少3场,结果公得19分。

向明中学在这次联赛中胜了多少场?

讲评:

本题中若直接将胜的场次设为未知数,无法用未知数的式子表示出负的场数和平的场数,但设平或负的场数,则可表示出胜的场数。

故设平x场,则负x-3场,胜10-(x+x-3)场,依题意有3[10-(x+x-3)]+x=19 ∴x=4 ∴10-(x+x-3)=5

  (4)行程问题。

  要掌握行程中的基本关系:

路程=速度×时间。

  相遇问题(相向而行),这类问题的相等关系是:

各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

甲走的路程+乙走的路程=全路程

追及问题(同向而行),这类问题的等量关系是:

两人的路程差等于追及的路程或以追及时间为等量关系。

1同时不同地:

甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程

2同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程

  环形跑道上的相遇和追及问题:

同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

船(飞机)航行问题:

相对运动的合速度关系是:

顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。

车上(离)桥问题:

①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。

②车离桥指车头离开桥到车尾离开桥的一段路程。

所走的路程为一个成长

③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长

④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长

  行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。

寻找的相等关系有:

路程关系、时间关系、速度关系。

在不同的问题中,相等关系是灵活多变的。

如相遇问题中多以路程作相等关系,而对有先后顺序的问题却通常以时间作相等关系,在航行问题中很多时候还用速度作相等关系。

例1.某队伍450米长,以每分钟90米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为3米/秒。

问往返共需多少时间?

讲评:

这一问题实际上分为两个过程:

①从排尾到排头的过程是一个追及过程,相当于最后一个人追上最前面的人;②从排头回到排尾的过程则是一个相遇过程,相当于从排头走到与排尾的人相遇。

在追及过程中,设追及的时间为x秒,队伍行进(即排头)速度为90米/分=1.5米/秒,则排头行驶的路程为1.5x米;追及者的速度为3米/秒,则追及者行驶的路程为3x米。

由追及问题中的相等关系“追赶者的路程-被追者的路程=原来相隔的路程”,有:

                  3x-1.5x=450   ∴x=300     

在相遇过程中,设相遇的时间为y秒,队伍和返回的人速度未变,故排尾人行驶的路程为1.5y米,返回者行驶的路程为3y米,由相遇问题中的相等关系“甲行驶的路程+乙行驶的路程=总路程”有:

   3y+1.5y=450   ∴y=100

故往返共需的时间为 x+y=300+100=400(秒)

例2汽车从A地到B地,若每小时行驶40km,就要晚到半小时:

若每小时行驶45km,就可以早到半小时。

求A、B两地的距离。

讲评:

先出发后到、后出发先到、快者要早到慢者要晚到等问题,我们通常都称其为“先后问题”。

在这类问题中主要考虑时间量,考察两者的时间关系,从相隔的时间上找出相等关系。

本题中,设A、B两地的路程为xkm,速度为40km/小时,则时间为

小时;速度为45km/小时,则时间为

小时,又早到与晚到之间相隔1小时,故有

          

=1          ∴ x=360

  例3一艘轮船在甲、乙两地之间行驶,顺流航行需6小时,逆流航行需8小时,已知水流速度每小时2km。

求甲、乙两地之间的距离。

讲评:

设甲、乙两地之间的距离为xkm,则顺流速度为

km/小时,逆流速度为

km/小时,由航行问题中的重要等量关系有:

-2=

 +2               ∴x=96 

(5)工程问题。

其基本数量关系:

工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。

当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。

工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为

常见的相等关系有两种:

①如果以工作量作相等关系,部分工作量之和=总工作量。

②如果以时间作相等关系,完成同一工作的时间差=多用的时间。

在工程问题中,还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。

例4.加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务。

问乙需工作几天后甲再继续加工才可正好按期完成任务?

讲评:

将全部任务的工作量看作整体1,由甲、乙单独完成的时间可知,甲的工作效率为

,乙的工作效率为

,设乙需工作x天,则甲再继续加工(12-x)天,乙完成的工作量为

,甲完成的工作量为

,依题意有 

+

=1  ∴x=8

 例5.收割一块麦地,每小时割4亩,预计若干小时割完。

收割了

后,改用新式农具收割,工作效率提高到原来的1.5倍。

因此比预计时间提前1小时完工。

求这块麦地有多少亩?

讲评:

设麦地有x亩,即总工作量为x亩,改用新式工具前工作效率为4亩/小时,割完x亩预计时间为

小时,收割

亩工作时间为

/4=

小时;改用新式工具后,工作效率为1.5×4=6亩/小时,割完剩下

亩时间为

/6=

小时,则实际用的时间为(

+

)小时,依题意“比预计时间提前1小时完工”有

-(

+

)=1      ∴x=36

例6.一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。

现在三管齐开,需多少时间注满水池?

   讲评:

由题设可知,甲、乙、丙工作效率分别为

、-

(进水管工作效率看作正数,排水管效率则记为负数),设x小时可注满水池,则甲、乙、丙的工作量分别为

、-

,由三水管完成整体工作量1,有     

+

=1  ∴ x=5

(6)溶液(混合物)问题

溶液(混合物)问题有四个基本量:

溶质(纯净物)、溶剂(杂质)、溶液(混合物)、浓度(含量)。

其关系式为:

①溶液=溶质+溶剂(混合物=纯净物+杂质);②浓度=

×100%=

×100%【纯度(含量)=

×100%=

×100%】;③由①②可得到:

溶质=浓度×溶液=浓度×(溶质+溶剂)。

在溶液问题中关键量是“溶质”:

“溶质不变”,混合前溶质总量等于混合后的溶质量,是很多方程应用题中的主要等量关系。

 

例11.把1000克浓度为80%的酒精配成浓度为60%的酒精,某同学未经考虑先加了300克水。

⑴试通过计算说明该同学加水是否过量?

⑵如果加水不过量,则应加入浓度为20%的酒精多少克?

如果加水过量,则需再加入浓度为95%的酒精多少克?

讲评:

溶液问题中浓度的变化有稀释(通过加溶剂或浓度低的溶液,将浓度高的溶液的浓度降低)、浓化(通过蒸发溶剂、加溶质、加浓度高的溶液,将低浓度溶液的浓度提高)两种情况。

在浓度变化过程中主要要抓住溶质、溶剂两个关键量,并结合有关公式进行分析,就不难找到相等关系,从而列出方程。

本题中,⑴加水前,原溶液1000克,浓度为80%,溶质(纯酒精)为1000×80%克;设加x克水后,浓度为60%,此时溶液变为(1000+x)克,则溶质(纯酒精)为(1000+x)×60%克。

由加水前后溶质未变,有(1000+x)×60%=1000×80%

     ∴x=

>300    ∴该同学加水未过量。

⑵设应加入浓度为20%的酒精y克,此时总溶液为(1000+300+y)克,浓度为60%,溶质(纯酒精)为(1000+300+y)×60%;原两种溶液的浓度分别为1000×80%、20%y,由混合前后溶质量不变,有(1000+300+y)×60%=1000×80%+20%  ∴y=50

(7)经济问题

与生活、生产实际相关的经济类应用题,是近年中考数学创新题中的一个突出类型。

经济类问题主要体现为三大类:

①销售利润问题、②优惠(促销)问题、③存贷问题。

这三类问题的基本量各不相同,在寻找相等关系时,一定要联系实际生活情景去思考,才能更好地理解问题的本质,正确列出方程。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿理论经验

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1