小学数学计算公式.docx

上传人:b****7 文档编号:25472766 上传时间:2023-06-09 格式:DOCX 页数:24 大小:23.46KB
下载 相关 举报
小学数学计算公式.docx_第1页
第1页 / 共24页
小学数学计算公式.docx_第2页
第2页 / 共24页
小学数学计算公式.docx_第3页
第3页 / 共24页
小学数学计算公式.docx_第4页
第4页 / 共24页
小学数学计算公式.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

小学数学计算公式.docx

《小学数学计算公式.docx》由会员分享,可在线阅读,更多相关《小学数学计算公式.docx(24页珍藏版)》请在冰豆网上搜索。

小学数学计算公式.docx

小学数学计算公式

小学数学的全部概念

三角形的面积=底×高÷2公式S=a×h÷2

正方形的面积=边长×边长公式S=a×a

长方形的面积=长×宽公式S=a×b

平行四边形的面积=底×高公式S=a×h

梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2

内角和:

三角形的内角和=180度。

长方体的体积=长×宽×高公式:

V=abh

长方体(或正方体)的体积=底面积×高公式:

V=abh

正方体的体积=棱长×棱长×棱长公式:

V=aaa

圆的周长=直径×π公式:

L=πd=2πr

圆的面积=半径×半径×π公式:

S=πr2

圆柱的表(侧)面积:

圆柱的表(侧)面积等于底面的周长乘高。

公式:

S=ch=πdh=2πrh

圆柱的表面积:

圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:

S=ch+2s=ch+2πr2

圆柱的体积:

圆柱的体积等于底面积乘高。

公式:

V=Sh

圆锥的体积=1/3底面×积高。

公式:

V=1/3Sh

分数的加、减法则:

同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:

用分子的积做分子,用分母的积做分母。

分数的除法则:

除以一个数等于乘以这个数的倒数。

读懂理解会应用以下定义定理性质公式

1、加法交换律:

两数相加交换加数的位置,和不变。

2、加法结合律:

三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:

两数相乘,交换因数的位置,积不变。

4、乘法结合律:

三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:

两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:

(2+4)×5=2×5+4×5

6、除法的性质:

在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

O除以任何不是O的数都得O。

简便乘法:

被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式?

等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:

等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?

答:

含有未知数的等式叫方程式。

9、什么叫一元一次方程式?

答:

含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。

10、分数:

把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:

同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:

同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:

分子比分母小的分数叫做真分数。

17、假分数:

分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于或等于1。

18、带分数:

把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:

分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

数量关系计算公式方面

1、单价×数量=总价2、单产量×数量=总产量

3、速度×时间=路程4、工效×时间=工作总量

5、加数+加数=和一个加数=和+另一个加数

被减数-减数=差减数=被减数-差被减数=减数+差

因数×因数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=商×除数

有余数的除法:

被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:

90÷5÷6=90÷(5×6)

6、1公里=1千米1千米=1000米

1米=10分米1分米=10厘米1厘米=10毫米

1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

1吨=1000千克1千克=1000克=1公斤=2市斤

1公顷=10000平方米1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米

7、什么叫比:

两个数相除就叫做两个数的比。

如:

2÷5或3:

6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:

表示两个比相等的式子叫做比例。

如3:

6=9:

18

9、比例的基本性质:

在比例里,两外项之积等于两内项之积。

10、解比例:

求比例中的未知项,叫做解比例。

如3:

χ=9:

18

11、正比例:

两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:

y/x=k(k一定)或kx=y

12、反比例:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:

x×y=k(k一定)或k/x=y

百分数:

表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化法。

16、最大公约数:

几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。

(或几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做最大公约数。

17、互质数:

公约数只有1的两个数,叫做互质数。

18、最小公倍数:

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:

把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数)

20、约分:

把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

(约分用最大公约数)

21、最简分数:

分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。

个位上是0或者5的数,都能被5整除,即能用5进行约分。

在约分时应注意利用。

22、偶数和奇数:

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

23、质数(素数):

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1不是质数,也不是合数。

28、利息=本金×利率×时间

(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:

利息与本金的比值叫做利率。

一年的利息与本金的比值叫做年利率。

一月的利息与本金的比值叫做月利率。

30、自然数:

用来表示物体个数的整数,叫做自然数。

0也是自然数。

31、循环小数:

一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。

如3.141414

32、不循环小数:

一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3.141592654

33、无限不循环小数:

一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

如3.141592654……

34、什么叫代数?

代数就是用字母代替数。

35、什么叫代数式?

用字母表示的式子叫做代数式。

如:

3x=(a+b)×c

 

小学阶段数学公式大全

算术定义定理公式

  1.加法交换律:

两数相加交换加数的位置,和不变。

2.加法结合律:

三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

  3.乘法交换律:

两数相乘,交换因数的位置,积不变。

  4.乘法结合律:

三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:

两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:

(2+4)×5=2×5+4×5。

  6.除法的性质:

在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

0除以任何不是0的数都得0。

  7.等式:

等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:

等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  8.方程式:

含有未知数的等式叫方程式。

  9.一元一次方程式:

含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

  学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。

  10.分数:

把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

  11.分数的加减法则:

同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

  12.分数大小的比较:

同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

  15.分数除以整数(0除外),等于分数乘以这个整数的倒数。

  16.真分数:

分子比分母小的分数叫做真分数。

  17.假分数:

分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于或等于1。

  18.带分数:

把假分数写成整数和真分数的形式,叫做带分数。

  19.分数的基本性质:

分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  20.一个数除以分数,等于这个数乘以分数的倒数。

  21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

基础运算公式

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

  3、速度×时间=路程路程÷速度=时间路程÷时间=速度

  4、单价×数量=总价总价÷单价=数量总价÷数量=单价

  5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差被减数-差=减数差+减数=被减数

  8、因数×因数=积积÷一个因数=另一个因数

  9、被除数÷除数=商被除数÷商=除数商×除数=被除数

  用字母表示:

  

  (a+b)xc=axc+bxc  还有一种表示法:

 ax(b+c)=ab+ac

小学数学定义定理公式

  三角形的面积=底×高÷2。

公式S=a×h÷2

  正方形的面积=边长×边长公式S=a×a

  长方形的面积=长×宽公式S=a×b

  平行四边形的面积=底×高公式S=a×h

  梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2

  内角和:

三角形的内角和=180度。

  长方体的体积=长×宽×高公式:

V=abh

  长方体(或正方体)的体积=底面积×高公式:

V=abh

  正方体的体积=棱长×棱长×棱长公式:

V=aaa

  圆的周长=直径×π公式:

L=πd=2πr

  圆的面积=半径×半径×π公式:

S=πr2

  圆柱的表(侧)面积:

圆柱的表(侧)面积等于底面的周长乘高。

公式:

S=ch=πdh=2πrh

  圆柱的表面积:

圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:

S=ch+2s=ch+2πr2

  圆柱的体积:

圆柱的体积等于底面积乘高。

公式:

V=Sh

  圆锥的体积=1/3底面×积高。

公式:

V=1/3Sh

  分数的加、减法则:

同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

  分数的乘法则:

用分子的积做分子,用分母的积做分母。

  分数的除法则:

除以一个数等于乘以这个数的倒数。

单位换算公式

长度单位换算

  1千米=1000米1米=10分米

  1分米=10厘米1米=100厘米

  1厘米=10毫米

  面积单位换算

  1平方千米=100公顷

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方厘米=100平方毫米

  体(容)积单位换算

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升

  1立方厘米=1毫升

  1立方米=1000升

  重量单位换算

  1吨=1000千克

  1千克=1000克

  1千克=1公斤

  人民币单位换算

  1元=10角

  1角=10分

  1元=100分

  时间单位换算

  1世纪=100年1年=12月

  大月(31天)有:

1\3\5\7\8\10\12月

  小月(30天)的有:

4\6\9\11月

  平年2月28天,闰年2月29天

  平年全年365天,闰年全年366天

  1日=24小时1时=60分

  1分=60秒1时=3600秒

 

 重量换算:

  1吨=1000千克

  1千克=1000克

  1千克=1公斤

人民币单位换算

  1元=10角

  1角=10分

  1元=100分

时间单位换算:

  1世纪=100年1年=12月

  大月(31天)有:

1\3\5\7\8\10\12月

  小月(30天)的有:

4\6\9\11月

  平年2月28天,闰年2月29天

  平年全年365天,闰年全年366天

  1日=24小时1时=60分

  1分=60秒1时=3600秒

数量关系式:

  1,每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2,1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

  3,速度×时间=路程路程÷速度=时间路程÷时间=速度

  4,单价×数量=总价总价÷单价=数量总价÷数量=单价

  5,工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

  6,加数+加数=和和-一个加数=另一个加数

  7,被减数-减数=差被减数-差=减数差+减数=被减数

  8,因数×因数=积积÷一个因数=另一个因数

  9,被除数÷除数=商被除数÷商=除数商×除数=被除数

 

 数量关系计算公式方面

  1.单价×数量=总价

  2.单产量×数量=总产量

  3.速度×时间=路程

  4.工效×时间=工作总量

 单位换算(大单位换小单位乘以进率,小单位换大单位除以坦进率。

  

(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米

  

(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

  (3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

  (4)1吨=1000千克1千克=1000克=1公斤=2市斤

  (5)1公顷=10000平方米1亩=666.666平方米

  (6)1升=1立方分米=1000毫升1毫升=1立方厘米

 

 求分率、百分率问题的公式

  比较数÷标准数=比较数的对应分(百分)率;

  增长数÷标准数=增长率;

  减少数÷标准数=减少率。

  或者是

  两数差÷较小数=多几(百)分之几(增);

  两数差÷较大数=少几(百)分之几(减)。

 增减分(百分)率互求公式

  增长率÷(1+增长率)=减少率;

  减少率÷(1-减少率)=增长率。

  比甲丘面积少几分之几?

  解这是根据增长率求减少率的应用题。

按公式,可解答为

  百分之几?

 

求比较数应用题公式

  标准数×分(百分)率=与分率对应的比较数;

  标准数×增长率=增长数;

  标准数×减少率=减少数;

  标准数×(两分率之和)=两个数之和;

  标准数×(两分率之差)=两个数之差。

求标准数应用题公式

  比较数÷与比较数对应的分(百分)率=标准数;

  增长数÷增长率=标准数;

  减少数÷减少率=标准数;

  两数和÷两率和=标准数;

  两数差÷两率差=标准数;

利率问题公式

  利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。

  

(1)单利问题:

  本金×利率×时期=利息;

  本金×(1+利率×时期)=本利和;

  本利和÷(1+利率×时期)=本金。

  年利率÷12=月利率;

  月利率×12=年利率。

  

(2)复利问题:

  本金×(1+利率)存期期数=本利和。

  例如,“某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?

  解

(1)用月利率求。

  3年=12月×3=36个月

  2400×(1+10.2%×36)

  =2400×1.3672

  =3281.28(元)

  

(2)用年利率求。

  先把月利率变成年利率:

  10.2‰×12=12.24%

  再求本利和:

  2400×(1+12.24%×3)

  =2400×1.3672

  =3281.28(元)

几何形体计算公式

小学数学几何形体周长面积体积计算公式

  1、长方形的周长=(长+宽)×2C=(a+b)×2

  2、正方形的周长=边长×4C=4a

  3、长方形的面积=长×宽S=ab

  4、正方形的面积=边长×边长S=a.a=a

  5、三角形的面积=底×高÷2S=ah÷2

  6、平行四边形的面积=底×高S=ah

  7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2

  8、直径=半径×2d=2r半径=直径÷2r=d÷2

  9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr

  10、圆的面积=圆周率×半径×半径

面积、体积换算公式

(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米

  

(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

  (3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

  (4)1公顷=10000平方米1亩=666。

666平方米

  (5)1升=1立方分米=1000毫升1毫升=1立方厘米

 

长方形

  长方形的周长=(长+宽)×2公式:

C=(a+b)×2

  长方形的面积=长×宽公式:

S=a×b

  长方体的体积=长×宽×高公式:

V=a×b×h

 

正方形

  正方形的周长=边长×4公式:

C=4a

  正方形的面积=边长×边长公式:

S=a×a

  正方体的体积=边长×边长×边长公式:

V=a×a×a

 平行四边形

  平行四边形的面积=底×高公式:

S=a×h

 

梯形

  s面积a上底b下底h高

  面积=(上底+下底)×高÷2

  s=(a+b)×h÷2

三角形

  s面积a底h高

  面积=底×高÷2

  s=ah÷2

  三角形高=面积×2÷底

  三角形底=面积×2÷高

 圆

  直径=半径×2公式:

d=2r

  半径=直径÷2公式:

r=d÷2

  圆的周长=圆周率×直径公式:

c=πd=2πr

  圆的面积=半径×半径×π公式:

S=πrr

 

 圆柱体

  v:

体积h:

高s;底面积r:

底面半径c:

底面周长

  

(1)侧面积=底面周长×高

  

(2)表面积=侧面积+底面积×2

  (3)体积=底面积×高

  (4)体积=侧面积÷2×半径

 圆锥体

  v:

体积h:

高s;底面积r:

底面半径

  体积=底面积×高÷3

  总数÷总份数=平均数

 

 小学数学图形计算公式

  1、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a

  2、正方体V:

体积a:

棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a

  3、长方形

  C周长S面积a边长

  周长=(长+宽)×2

  C=2(a+b)

  面积=长×宽

  S=ab

  4、长方体

  V:

体积s:

面积a:

长b:

宽h:

  

(1)表面积(长×宽+长×高+宽×高)×2

  S=2(ab+ah+bh)

  

(2)体积=长×宽×高

  V=abh

  5三角形

  s面积a底h高

  面积=底×高÷2

  s=ah÷2

  三角形高=面积×2÷底

  三角形底=面积×2÷高

  6平行四边形

  s面积a底h高

  面积=底×高

  s=ah

  7梯形

  s面积a上底b下底h高

  面积=(上底+下底)×高÷2

  s=(a+b)×h÷2

  8圆形

  S面积C周长∏d=直径r=半径

  

(1)周长=直径×∏=2×∏×半径

  C=∏d=2∏r

  

(2)面积=半径×半径×∏

  9圆柱体

  v:

体积h:

高s;底面积r:

底面半径c:

底面周长

  

(1)侧面积=底面周长×高

  

(2)表面积=侧面积+底面积×2

  (3)体积=底面积×高

  (4)体积=侧面积÷2×半径

  10圆锥体

  v:

体积h:

高s;底面积r:

底面半径

  体积=底面积×高÷3

  总数÷总份数=平均数

 

一般行程问题公式

  平均速度×时间=路程;

  路程÷时间=平均速度;

  路程÷平均速度=时间。

 相遇问题

  相遇路程=速度和×相遇时间

  相遇时间=相遇路程÷速度和

  速度和=相遇路程÷相遇时间

 同向行程问题公式

  追及(拉开)路程÷(速度差)=追及(拉开)时间;

  追及(拉开)路程÷追及(拉开)时间=速度差;

  (速度差)×追及(拉开)时间=追及(拉开)路程。

 反向行程问题公式

  反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 临床医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1