教育统计学与SPSS课后作业答案祥解题目.docx

上传人:b****9 文档编号:25421862 上传时间:2023-06-08 格式:DOCX 页数:15 大小:149.12KB
下载 相关 举报
教育统计学与SPSS课后作业答案祥解题目.docx_第1页
第1页 / 共15页
教育统计学与SPSS课后作业答案祥解题目.docx_第2页
第2页 / 共15页
教育统计学与SPSS课后作业答案祥解题目.docx_第3页
第3页 / 共15页
教育统计学与SPSS课后作业答案祥解题目.docx_第4页
第4页 / 共15页
教育统计学与SPSS课后作业答案祥解题目.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

教育统计学与SPSS课后作业答案祥解题目.docx

《教育统计学与SPSS课后作业答案祥解题目.docx》由会员分享,可在线阅读,更多相关《教育统计学与SPSS课后作业答案祥解题目.docx(15页珍藏版)》请在冰豆网上搜索。

教育统计学与SPSS课后作业答案祥解题目.docx

教育统计学与SPSS课后作业答案祥解题目

教育统计学课后作业

一、P1181

题目:

10位大一学生平均每周所花的学习时间与他们的期末考试成绩见表6-17.试问:

(1)学习时间与考试成绩之间是否相关?

(2)比较两组数据谁的差异程度大一些?

(3)比较学生2与学生9的期末考试测验成绩。

表6-17学习时间与期末考试成绩

1

2

3

4

5

6

7

8

9

10

学习时间

考试成绩

40

58

43

73

18

56

10

47

25

58

33

54

27

45

17

32

30

68

47

69

解题步骤:

(1)第一步:

定义变量:

“xuexishijian”、“xuexichengji”后,输入数据.如下图:

第二步:

单击选择“分析(Analyze)”中的“相关(Correlate)”中的“双变量(BivariateCorrelations)”,

将上图中的“xuexishijian”和“xuexichengji”添加到右边变量框中,如下图:

第三步:

点击“确定“后,输出结果如下图:

第四步:

分析结果

由上图可知:

学习时间与学习成绩之间的pearson相关系数为0.714,p(双侧)为0.20。

自由度df=10-2=8时,查“皮尔逊积差相关系数显著临界值表”知:

r0.05=0.623;r0.01=0.765。

因为0.765>0.714>0.623,所以在0.05水平上学习时间和学习成绩是相关显著的。

(2)SPSS软件分析结果如下图:

由上图可知:

学习时间标准差和平均值为:

S1=12.037⎺X1=29.00;学习时间标准差和平均值为:

S2=12.437⎺X2=56.00

根据差异系数公式可知:

学习时间差异系数为:

=12.037/29.00×100%=41.51%

学习成绩差异系数为:

=12.437/56.00×100%=22.27%

有上述结果可知学习时间差异程度大于学习成绩差异程度。

(4)把学生2和学生9的期末考试成绩转化成标准分数:

Z2=(X-⎺X)/S=(73—56)/12.437=1.367Z9=(X-⎺X)/S=(68—56)/12.437=0.965

由上计算可知:

学生2期末考试测验成绩优于学生9的期末考试测验成绩。

二、P1192

题目:

某班数学的平均成绩为90,标准差10;化学的平均分为85,标准差为8;物理的平均分为79,标准差为15.某生这三科成绩分别为95,80,80.试问

(1)该生在哪一学科上突出一些?

(2)该班三科成绩的差异度如何?

有无学习分化现象?

(3)该生的学期分数是多少?

(4)三科的总平均和总标准差是多少?

解题步骤:

(1)将该生地三科成绩转化为标准分数:

Z数=(X-⎺X)/S=(95—90)/10=0.500

Z化=(X-⎺X)/S=(80—85)/8=-0.625

Z物=(X-⎺X)/S=(80—79)/15=0.067

由以上计算可以看出该生在数学上突出一些。

(2)根据差异系数系数公式

可知:

该班三科成绩的差异系数分别为

数学差异系数:

=10/90×100%=11.11%

化学差异系数:

=8/85×100%=9.41%

物理差异系数:

=15/79×100%=18.99%

由上述计算可以看出三门学科的差异系数9%~20%,所以这三门学科均存在分化苗头。

(3)由

(1)可知三门学科的标准分数,所以标准分数的加权平均数为:

标准分数的加权平均分

计算结果表明:

该生的学期分数在班平均分数以下0.019个标准差的位置上,与平均水平非常接近。

(4)总平均分:

离差

d数=90-85=5d化=85-85=0d物=79-85=-6

总标准差:

三、P1195

题目:

三位教师对6位青年在大学的学习成绩进行评定(在0到20内),结果见表6-18.试问三位教师的评定是否一致?

表6-18学习成绩评定结果

教师

1

2

3

4

5

6

A

15

12

18

4

8

17

B

8

13

16

5

2

10

C

10

9

15

4

5

12

R

33

34

49

13

15

39

R2

1089

1156

2401

169

225

1521

183

6561

解题步骤:

因为评定对象为6,所以用W系数检验法进行判断:

由上图可知:

=33489

=6561

SS=

=6561-33489/6=979.5

查肯德尔W系数临界值表9,当N=6,k=3时,SS0.05=103.9SS0.01=122.8

因为SS=979.5>SS0.01=122.8,所以一致性极显著,三位教师的评定一致。

四、P12012

题目:

六年级的周宾在一次期末考试时语文96分,数学84分,父母批评他的数学学的不好,这种说法对吗?

为什么?

已知他所在班语文平均成绩为92,标准差为9.54,数学平均分为73,标准差为7.12.

解题步骤:

父母的这种说法是不科学的,语文、数学两个基准不一样的学科不能单单从表面上进行比较,要转化成标准分数才能判断优劣:

由上述计算可知,周宾的数学成绩明显优于语文成绩,其父母的判断是错误的。

五、P1961

题目:

假设对4000名大学新生的英语进行分班考试,结果考试成绩是正态分布。

若将学生分为四个等级进行分班教学,则各个等级应当分布多少学生?

解题步骤:

(1)确定各组在正态分布上的位置

正态分布区间以6个标准差为全距,因能力分组是等距的,则每一个等级的区间在横轴上的距离为6σ/4=1.5σ。

则四个组的能力区间范围是:

A组1.5σ以上,B组为0σ~1.5σ,C组为0σ~-1.5σ,D组为-1.5σ以下。

(2)查表,有Z求p。

A组:

PA=0.5-0.4331=0.0669

B组:

PB=0.4331

C组:

PC=0.4331

D组:

PD=0.5-0.4331=0.0669

(3)求各组人数

A=D=4000

0.0669=267.6

B=C=4000

0.4331=1732.4

六、P1963

题目:

为了对某门课的教学方法进行改革,某校对情况相似的两个班进行了教改实验。

甲班45人,采用教师面授的方法;乙班36人,采用教师讲授要点,学生讨论的方法。

一年后,用同一试卷对两个班进行测验。

结果,甲班平均分为69.5,标准差为8.35;乙班平均分为78,标准差为16.5(假设方差齐性)。

试问:

(1)两种教学方法的效果有无显著差异?

(2)哪种教学方法的差异程度大些?

(3)两种教法的总体均数是多少?

解题步骤:

(1)

1、条件分析

根据题意,可知总体为正态分布,总体方差未知,样本为独立,样本容量大于30,为双侧检验,可选择t检验或Z’检验。

2、检验过程

①建立假设:

Ho:

两种教学方法的效果无明显差异

Ha:

两种教学方法的效果有明显差异

②检验值计算:

均数之差的标准误:

检验值:

③比较决策:

当df=n1+n2-2=79时,t(79)0.01/2=2.650。

因为t=2.97>t(79)0.01/2=2.650,p<0.01即t=2.97处于-2.650~2.65之外。

所以差异极其显著,拒绝虚无假设,接受研究假设,说明两种教学方法存在明显的差异。

(2)根据差异系数公式:

可知甲班、乙班的差异系数为:

CV甲=8.35/69.5×100%=12.01%

CV乙=16.5/78×100%=21.15%

上述计算结果表明,乙班的教学方法差异程度大于甲班。

(3)两种教法的总体均数=(69.5×45+78×36)/(45+36)=73.28

七、P2741

题目:

用三种不同的教学方法分别对三个随机抽取的实验组进行教学实验,试实验后同一测验成绩如下,试问三中教学方法的效果是否存在显著差异(假设实验结果呈正态分布)

教法A:

76,78,60,62,74

教法B:

83,70,82,76,69

教法C:

92,86,83,85,79

解题步骤:

(1)定义变量“jiaofa”和“chengji”,输入数据并保存。

(2)点击“分析”→“比较均值”→“单因素ANOVA”

(3)选择“shuju”到“自变量”,选择“jiaofa”到“因子”。

(4)点击“选项”,选择“描述”、“方差同质性检验”,点击“继续”返回。

(5)点击“两两比较…”,选择“Tukey”,点击“继续”返回。

(6)点击“确定”,结果如下。

上述结果表示样本方差齐性,可以选用“Tukey”法计算。

上述结果表明,三组学习成绩间存在显著性差异,即不同的教法对学生的学习产生了极显著影响。

上述结果表明在0.05水平上教法A明显优于教法C

八、P2754

题目:

某地区在甲、乙两所中学随机抽取40名学生进行了语文统一测验,结果:

甲校平均成绩为74分,标准差为5分;乙校平均成绩为71分,标准差为10分。

试问:

(1)甲、乙两所学校的数学成绩有无显著差异?

(2)甲、乙两所学校数学成绩谁的差异程度大一些?

(3)在甲、乙两所学校同得80分得学生,其位置一样吗?

为什么?

(4)根据甲、乙两所学校的情况,试估计该地区数学测验成绩的真实情况。

解题步骤:

(1)该题为非正态,总体方差未知,样本独立。

样本容量大于30,,为双侧检验,选择Z’检验。

建立假设:

Ho:

μ1=μ2Ha:

μ1≠μ2

均数之差标准误:

因为Z’=1.55

拒绝研究假设,两所学校的数学成绩无明显差异。

(2)甲校差异系数为:

乙校差异系数为:

结果表明,乙校的数学成绩差异程度大于甲校。

(3)总体分布非正态,总体方差未知,样本容量大于30,用近似正态法。

甲学校80分的学生在该校位置为0.88493(即有88.493%的学生在80分以下)

乙学校80分的学生在该校位置为0.81594(即有81.594%的学生在80分以下)

故而在甲、乙两所学校同得80分的学生位置是不一样的。

(4)

九、P3001

题目:

某研究者想了解不同性别的消费者对某种商品的态度,在所调查的228名男性消费者中有160人喜欢该商品,而在208名女性消费者中有90人喜欢该商品,试问:

(1)对该商品的态度是否与性别有关?

(2)若有关,其相关程度有多大?

解题步骤:

(1)定义变量“人数”、“性别”和“喜欢与否”,输入数据并保存。

(2)点击Data→WeightCases,将“人数”选入“FrequencyVariable”,点击“OK”返回。

(3)点击Analyze→DescriptiveStatistics→Crosstabs,选择“性别”到“Row(s)”,选择“喜欢与否”到“Column(s)”。

(4)点击“Statistics...”,选择“Chi-square”,点击“continue”返回。

(5)点击“OK”,结果如下。

Value

df

Asymp.Sig.(2-sided)

ExactSig.(2-sided)

ExactSig.(1-sided)

PearsonChi-Square

32.191(b)

1

.000

ContinuityCorrection(a)

31.101

1

.000

LikelihoodRatio

32.554

1

.000

Fisher'sExactTest

.000

.000

Linear-by-LinearAssociation

32.117

1

.000

NofValidCases

436

aComputedonlyfora2x2table

b0cells(.0%)haveexpectedcountlessthan5.Theminimumexpectedcountis88.73.

上述结果表明对该商品的态度与性别有关,并且线性相关效果显著。

十、P3207

题目:

一位心理学工作者要从854名学生中抽取15学生作样本。

他将学生从001到854进行编号,设计了抽样框。

利用计算机,他获得如下的随机数字序列:

87823

53256

10686

41497

34560

68314

73474

75120

92638

37130

44503

13769

85619

36577

67255

52439

55403

16113

06744

37208

04788

24884

43285

56072

02936

33322

46265

60012

35288

53021

69328

15666

80382

63848

27829

98564

16683

05034

29066

50739

试问哪些学生将会被抽取?

解题步骤:

将上述随机数字序列按着三位数一组进行分割,得出:

87823532561068641497345606831473474751209263837130445031376985619365776725552439554031611306744372080478824884432855607202936333224626560012352885302169328156668038263848278299856416683050342906650739

出去无效数字后按顺序所得的号码对应的15个编号码即为抽中同学,被抽取的学生编号为:

235,610,686,414,456,068,314,734,747,512,092,638,371,304,450。

 

1.题目:

P118:

1、2、5、12

P196:

1、3

P274:

1、4

P300:

1

P320:

7

2.做题的过程中,要体现具体的过程,如下:

第一步:

新建文件、输入数据

第二步:

点击哪个按钮

……

第N步:

,得出结果,保存

作业7月30日前发给李娟老师

 

 

 

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 辩护词

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1