高级微观经济学 黄有光 AdMicroL1MathTools.docx

上传人:b****9 文档编号:25370516 上传时间:2023-06-07 格式:DOCX 页数:13 大小:130.41KB
下载 相关 举报
高级微观经济学 黄有光 AdMicroL1MathTools.docx_第1页
第1页 / 共13页
高级微观经济学 黄有光 AdMicroL1MathTools.docx_第2页
第2页 / 共13页
高级微观经济学 黄有光 AdMicroL1MathTools.docx_第3页
第3页 / 共13页
高级微观经济学 黄有光 AdMicroL1MathTools.docx_第4页
第4页 / 共13页
高级微观经济学 黄有光 AdMicroL1MathTools.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

高级微观经济学 黄有光 AdMicroL1MathTools.docx

《高级微观经济学 黄有光 AdMicroL1MathTools.docx》由会员分享,可在线阅读,更多相关《高级微观经济学 黄有光 AdMicroL1MathTools.docx(13页珍藏版)》请在冰豆网上搜索。

高级微观经济学 黄有光 AdMicroL1MathTools.docx

高级微观经济学黄有光AdMicroL1MathTools

ECC5650MicroeconomicTheory

Topic1:

Set,Topology,RealAnalysisandOptimization

(withthecomplementofAssociateProf.MichaelLi)

Readings:

JR-Chapters1&2,supplementedbyDL-AppendixC

1.1Introduction

Inthislecture,wewillquicklygothroughsomebasicmathematicalconceptsandtoolsthatwillbeusedthroughouttherestofthecourse.Asthisisareviewsession,theattentionwillbemainlyonrefreshingonthelanguage,styleandrigorofmathematicalreasoning.Ineconomicanalysis,especiallymicroeconomicanalysis,mathematicsisalwaystreatedasatool,nevertheend.Ontheotherhand,byintegratingeconomicswithrigorousmathematics,wewillbeabletodevelopthetheoreticalexpositionsinasoundandlogicalmanner,whichiswhyeconomicsisalsoknownaseconomicscience.Notmanyothertraditionallyknownassocialsciencefieldsmanagetopassthiscriticalstage.Butitisimportanttorememberthatasaneconomist,wemustgobeyondthenormalmathematicaltreatmentandtheunderlyingeconomicsandtheirpolicyimplicationsarefarmoreimportantandinteresting.

Theplanofthislecturegoeslikethis.First,wewillreviewthebasicsettheory.Wethenmoveontoabitoftopology.Afterreviewingbasicelementsofrealanalysis,wewillcoversomekeyresultsinoptimization.

 

1.2BasicsofSetTheory

1.2.1BasicConcepts

∙set:

acollectionofelements

∙setsoperations:

union,intersection

∙realsets:

(thenotionofvectors)

∙:

forany;:

thereexists;:

suchthat;:

belongsto;isanelementof

1.2.2Convexity&Relations

ConvexSet:

∙AsetSRnisconvexif

∙Intuitively,asetisaconvexsetifandonlyif(iff)wecanconnectanytwopointsinastraightlinethatliesentirelywithintheset.

∙Convexsethasnoholes,nobreaks,noawkwardcurvaturesontheboundaries;theyareconsideredas“nicesets”.

∙Theintersectionoftwoconvexsetsremainsconvex.

Relations

∙Foranytwogivensets,SandT,abinaryrelationRbetweenSandTisacollectionoforderedpairs(s,t)withsSandtT.

∙ItisclearthatRisasubsetofST:

(s,t)RorsRt.

PropertiesofRelations:

∙Completeness

∙RSSiscompleteiffforallxandy(xy)inS,xRyoryRx.

∙Reflexivity

∙RSSisreflexiveifforallxinS,xRx.

∙Transitivity

∙RSSistransitiveifforallx,y,zinS,xRyandyRzimpliesxRz.

1.3Topology

Topologyattemptstostudythefundamentalpropertiesofsetsandmappings.OurdiscussionwillbemainlyontherealspaceRn.

∙Arealtopologicalspaceisnormallydenotedas(Rn,d),wheredisthemetricdefinedontherealspace.Intuitivelyspeaking,disadistancemeasurebetweentwopointsintherealspace.

∙EuclideanspacesarespecialrealtopologicalspacesassociatedwiththeEuclideanmetricdefinedasfollows:

1.3.1SetsonaRealTopologicalSpace

-Balls

∙Open-Ballforapointx0:

for>0,

∙Closed-Ballforapointx0:

for>0,

OpenSets

∙SRnisopensetif,xS,>0suchthat()B(x)S.

∙PropertiesofOpenSets:

∙Theemptysetandthewholesetareopenset

∙Unionofopensetsisopen;intersectionofopensetsisopentoo.

∙Anyopensetcanberepresentedasaunionofopenballs:

where

.

ClosedSets

∙Sisaclosedsetifitscomplement,Sc,isanopenset.

∙ApointxSisaninteriorpointifthereissome-ballcenteredatxthatisentirelycontainedinS.ThecollectionofallinteriorpointsofSisdenotedbyintS,knownastheinteriorofS.

∙PropertiesofClosedSets:

∙Theemptysetandthewholesetareclosed;

∙Unionofanyfinitecollectionofclosedsetsisaclosedset;

∙Intersectionofclosedsetsisaclosedset.

CompactSets

∙AsetSisboundedif>0suchthat():

SB(x)forsomexS.

∙AsetinRnthatisclosedandboundediscalledacompactset.

1.3.2Functions/MappingsonRn

∙LetDRm,f:

DRn.Wesayfiscontinuousatthepointx0Dif

>0,>0

∙SpecialCase:

DR,f:

DR.fiscontinuousatx0Dif

>0,>0

PropertiesofContinuousMappings:

∙LetDRm,f:

DRn.Then

∙fiscontinuousforallopenballBRn,f--1(B)isopeninD

forallopensetSRn,f--1(S)isopeninD

∙IfSDiscompact(closedandbounded),thenitsimagef(S)iscompactinRn.

1.3.3WeierstrassTheorem&TheBrouwerFixed-PointTheorem

Thesetwotheorems,knownasexistencetheorems,areveryimportantinmicroeconomictheory.“Anexistencetheorem”specifiesconditionsthat,ifmet,somethingexists.Inthemeantime,pleasekeepinmindthattheconditionsintheexistencetheoremsarenormallysufficientconditions,meaningthatiftherequiredconditionsareNOTmet,itdoesnotmeanthenonexistenceofsomething–itmaystillexist.Theexistencetheoremssayverylittleaboutexactlocationofthissomething.Inotherwords,existencetheoremsarepowerfultoolsforshowingthatsomethingisthere;butitisnotsufficientinactuallyfindingtheequilibrium.

WeierstrassTheorem–ExistenceofExtremeValues

∙Thisisafundamentalresultinoptimizationtheory.

∙(WeierstrassTheorem)Letf:

SRbeacontinuousreal-valuedmappingwhereSisanonemptycompactsubsetofRn.Thenaglobalmaximumandaglobalminimumexist,namely,

TheBrouwerFixed-PointTheorem

Manyprofoundquestionsaboutthefundamentalconsistencyofmicroeconomicsystemshavebeenansweredbyreformulatingthequestionasoneoftheexistenceofafixedpoint.Examplesinclude:

∙Theviewofacompetitiveeconomyasasystemofinterrelatedmarketsislogicallyconsistentwiththissetting;

∙Thewell-knownMinimaxTheoremingametheory

∙(BrouwerFixed-PointTheorem)LetSRnbeanonemptycompactandconvexset.Letf:

SSbecontinuousmapping.ThenthereexistsatleastonefixedpointoffinS.Thatis,x*Ssuchthatx*=f(x*).

1.4Real-ValuedFunctions

∙Bydefinition,areal-valuedfunctionisamappingfromanarbitrarysetD(domainset)ofRntoasubsetRofthereallineR(rangeset).

∙f:

DR,withDRn&RR.

Increasing/DecreasingFunctions:

∙Increasingfunction:

f(x0)f(x1)wheneverx0x1;

∙Strictlyincreasingfunction:

f(x0)>f(x1)wheneverx0>x1;

∙Stronglyincreasingfunction:

f(x0)>f(x1)wheneverx0x1andx0x1

∙Similarly,wecandefinethethreetypesofdecreasingfunctions.

ConcavityofReal-ValuedFunctions

∙Assumptionf:

DR,withDRnisconvexsubsetofRn&RR.

∙f:

DRisconcaveifforallx1,x2D,

∙Intuitivelyspeaking,afunctionisconcaveiffforeverypairofpointsonitsgraph,thechordbetweenthemliesonorbelowthegraph.

∙f:

DRisstrictconcaveifforallx1x2inD,

∙f:

DRisquasiconcaveifforallx1,x2D,

∙f:

DRisstrictlyquasiconcaveifforallx1x2inD,

ConvexityofReal-ValuedFunctions

∙Afterthediscussionofconcavefunctions,wecantakecareoftheconvexfunctionsbytakingthenegativeofaconcavefunction.

∙f:

DRisconvexifforallx1,x2D,

∙f:

DRisstrictconvexifforallx1x2inD,

∙f:

DRisquasiconvexifforallx1,x2D,

∙f:

DRisstrictlyquasiconvexifforallx1x2inD,

PropertiesofConcave/ConvexFunctions

∙f:

DRisconcavethesetofpointsbeneaththegraph,i.e.,{(x,y)|xD,f(x)y}isaconvexset.

∙f:

DRisconvexthesetofpointsabovethegraph,i.e.,{(x,y)|xD,f(x)y}isaconvexset.

∙f:

DRisquasiconcavesuperiorsets,i.e.,{x|xD,f(x)y}areconvexforallyR.

∙f:

DRisquasiconvexinferiorsets,i.e.,{x|xD,f(x)y}areconvexforallyR.

∙Iffisconcave/convexfisquasiconcave/quasiconvex;

∙f(strictly)concave/quasiconcave-f(strictly)convex/quasiconvex.

∙Letfbeareal-valuedfunctiondefinedonaconvexsubsetDofRnwithanonemptyinterioronwhichfisatwicedifferentiablefunction,thenthefollowingstatementsareequivalent:

∙Iffisconcave.

∙TheHessianmatrixH(x)isnegativesemidefiniteforallxinD.

∙Forallx0D,f(x)f(x0)+f(x0)(x–x0),xD.

HomogeneousFunctions

∙Areal-valuedfunctionf(x)iscalledhomogeneousofdegreekif

.

PropertiesofHomogeneousFunctions:

∙fishomogeneousofdegreek,itspartialderivativesarehomogeneousofdegreek–1.

∙(Euler’sTheorem)f(x)ishomogeneousofdegreekiff

1.5IntroductiontoOptimization

∙Wewillfocusonreal-valuedfunctionsonly.

MainConceptsofOptima

∙Localminimum/maximum

∙Globalminimum/maximum

∙Interiormaxima,boundarymaxima

1.5.1UnconstrainedOptimization

First-Order(Necessary)ConditionforLocalInteriorOptima

∙Ifthedifferentiablefunctionf(x)reachesonalocalinteriormaximumorminimumatx*,thenx*solvesthesystemofsimultaneousequations:

f(x*)=0.

Second-Order(Necessary)ConditionforLocalInteriorOptima

Letf(x)betwicedifferentiable.

1.Iff(x)reachesalocalinteriormaximumatx*,thenH(x*)isnegativesemidefinite.

2.Iff(x)reachesalocalinteriorminimumatx*,thenH(x*)ispositivesemidefinite.

Notes:

∙Thereisasimplemethodincheckingwhetheramatrixisanegative(positive)semidefinte,whichistoexaminethesignsofthedeterminantsoftheprincipleminorsforthegivenmatrix.

Local-GlobalOptimizationTheorem

∙Foratwicecontinuouslydifferentiablereal-valuedconcavefunctionfonD,thefollowingthreestatementsareequivalent,wherex*isaninteriorpointofD:

1.f(x*)=0.

2.fachievesalocalmaximumatx*.

3.fachievesaglobalmaximumatx*.

StrictConcavity/ConvexityandUniquenessofGlobalOptima

∙Ifx*maximizesthestrictlyconcave(convex)functionf,thenx*istheuniqueglobalmaximizer(minimizer).

1.5.2ConstrainedOptimi

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1