煤与瓦斯共采技术采矿工程论文论文.docx
《煤与瓦斯共采技术采矿工程论文论文.docx》由会员分享,可在线阅读,更多相关《煤与瓦斯共采技术采矿工程论文论文.docx(6页珍藏版)》请在冰豆网上搜索。
煤与瓦斯共采技术采矿工程论文论文
煤与瓦斯共采技术采矿工程论文
一、我国煤与瓦斯的基本特征
我国的煤炭资源较丰富,目前的保有储量1100多亿t,且有48%的煤层属于高瓦斯和突出煤层,因此瓦斯储量丰富。
埋深2000m以浅已探明煤层气资源约为31万亿m³,位列世界第三。
但我国大规模的商业化瓦斯开采尚处于起步阶段,国家的相关产业政策出台较晚,或尚不明朗。
这里有认识和技术问题,更有我国煤层的透气性差,抽放困难等原因。
我国70%以上的煤层渗透率小于0.001μm²,属于低透气性煤层,其透气性比美国和澳大利亚低2--3个数量级,钻孔有效排放半径和钻孔瓦斯流量小,衰减快,透气性最好的抚顺煤层井下水平钻孔与美国同类条件相比,钻孔影响范围仅30--50m,而美国可达到100m以上。
煤层气体压力也对瓦斯的抽放起着重要作用,有关资料表明,我国煤层压力普遍偏低,这对抽放瓦斯极为不利。
中国的含煤地层一般都经历了成煤后的强烈构造运动,煤层内生裂隙系统遭到破坏,成为低透气性的高延性结构。
目前,我国瓦斯勘探和开发的主要煤阶是中阶煤和高阶煤,具有很强的非均质性,导致井网的井间干扰效应降低,相互间不能形成有效的联系,水力压裂增产效果也不明显。
二、煤与瓦斯共采技术的理论基础
限制我国高瓦斯矿井井下瓦斯抽放的原因,主要是煤层的低渗透率和高可塑性,使得沿煤层打钻孔困难,煤层采前预抽效果较差。
由于我国含煤地层一般都经历了成煤后的强烈构造运动,煤层内生裂隙系统遭到破坏,塑变性大大增强,因而成为低透气性的高可塑性结构,这使得地面钻孔完井后采气效果差,水力压裂增产效果不明显。
而且煤层普遍具低渗透率,一般在0.0000001×0.000001μm²范围内,水城、丰城、霍岗、开滦、柳林等渗透率较好的矿区也仅为0.1×10ˉ³--1.8×10ˉ³μm²,这一特点决定了我国地面开发煤层气的难度很大。
鉴于此,我国煤层气开发生产的重点应放在井下,利用井下的采掘巷道,并尽量利用煤层采动影响,通过打钻孔和其它各种有效技术强化煤层的瓦斯抽放。
同时,应进一步研究和不断完善提高煤层渗透率的技术和钻孔技术,研究提高气体质量的技术,研究井下煤炭与瓦斯的协调开采配套技术以及煤矿瓦斯利用技术,使之与井下煤层气开发产业配套,实现煤与瓦斯的安全共采。
现场测定和实验研究表明,不论原始渗透系数怎样低的煤层,在采动影响煤层卸压后,其渗透系数会急剧增加,煤层内瓦斯渗流速度大增,瓦斯涌出量也随之剧增。
因此,只要合理布置钻孔位置和其它相关参数,完全能够高效地实现瓦斯抽放。
三、煤与瓦斯共采技术的研究现状
我国的煤层甲烷研究开始于50年代煤矿井下的瓦斯抽放,其中抚顺、阳泉是抽放量最大的矿区。
目前,我国已有123个矿井建立了井下瓦斯抽放系统,年抽放量达6亿m³,抽放瓦斯利用率达80%,但井下瓦斯的抽放率很低,只有20%左右.60年代到70年代,一些高瓦斯矿区抽放的瓦斯气体即可投入民用和小规模的工业利用。
70年代末期开始了矿井地面瓦斯抽放工作,主要集中于抚顺龙凤矿、阳泉矿、焦作中马村矿、湖南里王庙矿,并进行了压裂实验,但是效果不佳。
80年代初期,国内开始进行煤层甲烷相关资源研究。
“六五”期间,煤炭、石油以及地质等行业通过国家重点科技攻关项目对国内煤成气资源进行区域性评价和基础理论研究。
随后,国家“七五”科技攻关项目设立了“我国煤层甲烷的富集条件及资源评价”专题,取得了对中国煤层气资源状况的初步认识。
华北石油地质局1986年在唐山地区开展了煤层甲烷勘探开发实验和工艺技术研究,并进行了“煤层甲烷评价与开发利用状况”调研。
1989年,第一次“开发煤层气研讨会”在沈阳召开,标志着煤层甲烷从“瓦斯灾害”到“优质能源”的认识转变、从“井下抽放”到“地面开发”的技术转移。
“八五”期间,国家科技攻关项目设立了“有利区块煤层吸附气开发研究”专题。
此后,煤层甲烷的研究重点转移到了开发工艺攻关上。
1992年,联合国开发计划署通过全球环境基金资助我国开展了“中国煤层气资源开发”项目,1993年又资助了“中国深层煤层气勘探”项目,对中国煤层气的勘探开发起到了巨大的推动作用。
1996年,一批有影响的研究项目和规划相继完成,如原煤炭部计划项目“全国煤层气资源评价”、国家计委Ⅰ类资源勘查项目“中国煤层气资源评价”、国土资源部地质调查项目“全国煤层气综合规划研究”、原石油天然气总公司“九五”科技攻关项目“煤层气选区评价与配套工艺技术”、国家“九五”科技攻关项目“新集浅层煤层气示范开发成套工艺技术及专用装备研究”等。
到目前为止,对全国范围内的煤层气资源、分布、储层特征取得了基础性认识,基本明确了煤层气开发的有利地区。
但是由于我国的煤层地质现状(地质条件复杂,构造煤发育,瓦斯含量高,瓦斯压力低,渗透率低等),煤层气的地面开发并不能很好解决井下瓦斯问题。
现阶段,井下瓦斯抽放方法很多,例如,掘前预抽、边掘边抽、采后抽取、卸压瓦斯钻孔抽取、以及开采层、邻近层、采空区瓦斯抽取等等。
因此,如何将井下瓦斯抽放与地面煤层气开发协调地结合起来,更好地实现煤与瓦斯共采,就成为一个值得深思的问题。
总之,我国煤与瓦斯共采的研究开发取得了很大进步,但也存在许多有待于进一步研究和解决的问题。
四、煤与瓦斯共采需要解决的关键问题
(一)深入的理论研究
利用采动卸压场与裂隙场增加煤层瓦斯的解吸速度与煤岩的透气性,实现矿井煤与瓦斯双能源开采的思想提出来已经有几年了,按照这一技术思路,我国相关大学和企业进行了必要的研究和工程实践,取得了一定的成果,但是总体上,理论研究有落后于工程实践的趋势,今后在理论上需要解决的主要理论问题有:
1、采动裂隙场的透气规律研究
经过多年采矿学者和技术人员的研究,目前对于采动卸压场和裂隙场的范围已经有了相对成熟的成果和研究手段,研究的技术思路上也相对成熟,有经验的学者已经能够估算出采动卸压场和裂隙场的范围以及随采动影响的变化规律,这对于裂隙场卸压抽放瓦斯具有重要的指导作用。
但是对于裂隙场内岩体的破裂情况及破裂分布尚没有相对成熟的研究成果,对于瓦斯气体在裂隙场内的解吸、扩散、渗流等规律以及裂隙场内的透气性等还有待进一步研究。
2、瓦斯浓度分布规律研究
进行煤与瓦斯抽放时的一个重要问题就是要掌握高浓度瓦斯的分布规律,为抽放工程设计提供理论指导。
目前需要深入研究的有卸压带、采空区、上覆岩层裂隙场内等不同瓦斯浓度的分布规律,以及它们随着工作面推进以及风量变化等的动态变化规律。
3、瓦斯抽放时的流动规律
主要研究采空区和裂隙场内进行不同压力抽放时瓦斯流动规律、瓦斯气体与裂隙岩体的耦合相互作用规律,研究原始煤体、卸压带与裂隙带内瓦斯抽放过程中固体煤岩物理力学性质的变化,尤其是抽放过程中透气性变化规律等,这些工作需要大量的室内试验和研制专用的试验设备及大量的现场观测与试验研究。
(二)增加和稳定抽放的瓦斯浓度
在原始煤体中进行预抽放的瓦斯体积分数可以达到30%以上,但是由于原始煤岩的透气性低,抽放难度较大,且一般只能抽出煤层瓦斯的20%--30%,煤体中还残留大量瓦斯。
在高位裂隙带内抽放的瓦斯体积分数可以达到20%以上,这两部分抽出的瓦斯浓度相对较高,具有利用的前景和可行性,而且目前大部分也进行了利用。
在煤层卸压带内和采空区抽出的瓦斯体积分数一般均低于20%,大部分为13%--15%,这主要是由于卸压带内煤岩破裂、空气渗入,采空区顶板垮落,大量空气混入等原因,对于这些相对浓度较低的瓦斯输送、利用和安全保障技术等还需要进一步研究。
(三)低浓度瓦斯利用与提纯
除了原始煤层中预抽和高位裂隙带内抽出的瓦斯浓度相对较高外,采空区、卸压带内抽出的瓦斯浓度相对较低,巷道风排的瓦斯浓度更低,但是这些低浓度的瓦斯量很大,一般会占瓦斯总量的50%以上,如何安全利用这些低浓度瓦斯,一直是瓦斯作为能源开采时的最大障碍之一。
目前,在这些方面进行了许多探讨和研究,但是核心问题,如输送与使用的安全问题、提纯的高成本问题等,依然没有解决。
五、煤与瓦斯共采技术原理
煤层的采动会引起其周围岩层产生“卸压增透”效应,即引起周围岩层地应力封闭的破坏(地应力降低-卸压、孔隙与裂缝增生张开)、层间岩层封闭的破坏(上覆煤岩层垮落、破裂、下沉、下位煤岩层破裂、上鼓)以及地质构造封闭的破坏(封闭的地质构造因采动而开放、松弛),3者综合导致围岩及其煤层的透气性系数大幅度增加,为卸压瓦斯高产高效抽采创造前提条件。
煤层卸压瓦斯的流动是一个连续的两步过程:
第1步,以扩散的形式,瓦斯从没有裂隙的煤体流到周围的裂隙中去;第2步,以渗流的形式,瓦斯沿裂隙流到抽采钻孔处。
卸压瓦斯的运移与岩层移动及采动裂隙的动态分布特征有着紧密的关系。
(一)高抽钻孔组抽采技术原理
煤层开采将引起岩层移动与破断,并在岩层中形成采动裂隙。
按采动裂隙性质可分为两类:
一类为离层裂隙,是随岩层下沉在不同岩性地层之间出现的沿层裂隙,它可使煤层产生膨胀变形而使瓦斯卸压,并使卸压瓦斯沿离层裂隙流动;另一类为竖向破断裂隙,是随岩层下沉破断形成的穿层裂隙,它构成上下层间的瓦斯通道。
当采空区顶板充分垮落后,采空区中部岩层和下方的矸石紧密接触,从而使得采空区中部顶板岩层裂隙基本被压实,结合采场空间特点,采空区四周形成了一个环形的采动裂隙发育区,文献称之为“O”形圈。
在“O”形圈上方或者下方受采动影响的煤层瓦斯在含量梯度和压力梯度作用下以扩散和渗流的形式向“O”形圈内运移,使得“O”形圈成为卸压煤层瓦斯聚集和运移的主要通道。
卸压瓦斯“O”形圈抽采理论表明,卸压瓦斯抽采钻孔的合理位置应打到离层裂隙的“O”形圈内。
高抽钻孔组就是在沿工作面倾斜方向靠近回风巷侧布置一组千米大直径抽采钻孔,利用采动裂隙“O”形圈作为运移通道来抽采采空区瓦斯。
高抽钻孔组布置靠近在“O”形圈的回风侧,改变了采空区瓦斯流场,有效解决上隅角瓦斯超限问题,且“O”形圈长期存在,抽采钻孔能够长时间、稳定的抽采出高含量瓦斯。
(二)顶板裂隙钻孔组抽采技术原理
采用全部垮落法管理顶板时,上覆岩层下沉稳定后,在采动区沿垂直方向由上至下形成了冒落带、裂隙带和弯曲下沉带。
研究表明,在回采过程中,靠近工作面一定范围内的采空区中部上覆岩层离层裂隙发育,结合采动裂隙“O”形圈,在采空区竖直方向上,形成了一个“∩”形拱采动裂隙区采空区不同瓦斯涌出源的瓦斯在浮力作用下沿采动裂隙带裂隙通道上升,上升中不断掺入周围气体,使涌出源瓦斯与环境气体的密度差逐渐减小直到密度差为零,混合气体则会聚集在裂隙带上部的离层裂隙内。
涌入采空区的瓦斯,在其含量梯度作用下引起普通扩散,由于空气的重力产生方向向下的压强梯度,则其产生的扩散流方向,与压强梯度反向,即瓦斯气体具有向上扩散的趋势。
因此,在瓦斯浮力、含量梯度及通风负压的作用下“∩”形拱采动裂隙区成为瓦斯聚集区,为采动裂隙带内钻孔抽采、巷道排放等治理瓦斯技术提供依据。
由于沙曲矿近距离高瓦斯煤层群的赋存特性瓦斯涌出量大,仅靠高抽钻孔组不能完全解决沙曲矿的瓦斯治理难题,因此,基于上述理论分析,在采空区顶板裂隙区布置顶板裂隙抽采钻孔组,。
顶板裂隙钻孔组加强了采空区瓦斯抽采,直接对上邻近层卸压瓦斯进行抽采,减弱了采空区瓦斯涌出强度,从根本上解决瓦斯超限难题。
(三)构建煤与瓦斯共采技术体系
依据以上分析研究,结合本煤层预抽法,构建沙曲矿近距离高瓦斯煤层群“煤与瓦斯共采”技术体系。
六、煤与瓦斯共采的研究方向
(一)煤与瓦斯共采是煤矿绿色开采的重要分点将煤层气开采出来将是煤与瓦斯共采的一条重要途径。
在井下因采动影响地层压力发生变化,由于开采卸压,煤层中的瓦斯压力升高,煤中原来的孔裂隙系统的毛细管力反而降低,极易被瓦斯突破形成更大的孔裂隙系统,结果瓦斯解吸运移过程加剧。
因此,合理利用采动矿山压力引起的岩层活动规律,有效地进行井下瓦斯抽放和地面煤层气开发,是煤与瓦斯共采的关键技术问题。
岩层运动中的关键层理论、煤与瓦斯突出的流变机理和球壳失稳理论等对煤与瓦斯共采技术的应用发展有着重要参考价值。
(二)在进行煤与瓦斯共采技术的研究过程中,应该具体情况具体对待,多提出一些有针对性的瓦斯抽取新技术,如松藻打通一矿的采煤工作面特异型瓦斯涌出及抽放研究,打通二矿的综合瓦斯抽放技术提高工作面瓦斯抽放率研究等。
同时应该注重将井下瓦斯抽取与地面煤层气开采有机地结合起来,形成一整套属于煤与瓦斯共采的基础理论和技术体系,从而在煤矿区真正实现煤与瓦斯共采,更好地为煤矿绿色开采服务。