精品数值分析课程设计三次样条插值.docx

上传人:b****9 文档编号:25146360 上传时间:2023-06-05 格式:DOCX 页数:9 大小:328.57KB
下载 相关 举报
精品数值分析课程设计三次样条插值.docx_第1页
第1页 / 共9页
精品数值分析课程设计三次样条插值.docx_第2页
第2页 / 共9页
精品数值分析课程设计三次样条插值.docx_第3页
第3页 / 共9页
精品数值分析课程设计三次样条插值.docx_第4页
第4页 / 共9页
精品数值分析课程设计三次样条插值.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

精品数值分析课程设计三次样条插值.docx

《精品数值分析课程设计三次样条插值.docx》由会员分享,可在线阅读,更多相关《精品数值分析课程设计三次样条插值.docx(9页珍藏版)》请在冰豆网上搜索。

精品数值分析课程设计三次样条插值.docx

精品数值分析课程设计三次样条插值

 

《数值分析课程设计-三次样条插值》

报告

 

掌握三次样条插值函数的构造方法,体会三次样条插值函数对被逼近函数的近似。

三次样条插值函数边界条件由实际问题对三次样条插值在端点的状态要求给出。

以第1边界条件为例,用节点处二阶导数表示三次样条插值函数,用追赶法求解相关方程组。

通过Matlab编制三次样条函数的通用程序,可直接显示各区间段三次样条函数体表达式,计算出已给点插值并显示各区间分段曲线图。

引言

分段低次样条插值虽然计算简单、稳定性好、收敛性有保证且易在电子计算机上实现,但只能保证各小段曲线在连接处的连续性,不能保证整件曲线的光滑性。

利用样条插值,既可保持分段低次插值多项式,又可提高插值函数光滑性。

故给出分段三次样条插值的构造过程算法步骤,利用Matlab软件编写三次样条插值函数通用程序,并通过数值算例证明程序的正确性。

三次样条函数的定义及特征

定义:

设[a,b]上有插值节点,a=x1<x2<…xn=b,对应函数值为y1,y2,⋯yn。

若函数S(x)满

足S(xj)=yj(j=1,2,⋯,n),S(x)在[xj,xj+1](j=1,2,⋯,n-1)上都是不高于三的多项式(为了与其对应j从1开始,在Matlab中元素脚标从1开始)。

当S(x)在[a,b]具有二阶连续导数。

则称S(x)为三次样条插值函数。

要求S(x)只需在每个子区间[xj,xj+1]上确定1个三次多项式,设为:

Sj(x)=ajx3+bjx2+cjx+dj,(j=1,2,⋯,n-1)

(1)

其中aj,bj,cj,dj待定,并要使它满足:

S(xj)=yj,S(xj-0)=S(xj+0),(j=2,⋯,n-1)

(2)

S'(xj-0)=S'(xj+0),S"(xj-0)=S"(xj+0),(j=2,⋯,n-1)(3)

(2)、(3)共给出n+3(n-2)=4n-6个条件,

需要待定4(n-1)个系数,因此要唯一确定三次插值函数,还要附加2个边界条件。

通常由实际问题对三次样条插值在端点的状态要求给出。

常用边界的条件有以下3类。

第1类边界条件:

给定端点处的一阶导数值,S'(x1)=y1',S'(xn)=yn'。

第2类边界条件:

给定端点处的二阶导数值,S"(x1)=y1",S"(xn)=yn"。

特殊情况y1"=yn"=0,称为自然边界条件。

第3类边界条件是周期性条件,如果y=f(x)是以b-a为周期的函数,于是S(x)在端点处满足条件S'(x1+0)=S'(xn-0),S"(x+0)=S"(xn-0)。

下以第1边界条件为例,利用节点处二阶导数来表示三次样条插值函数,给出具体的推导过程。

2三次样条插值函数的推导过程

注意到S(x)在[xj,xj+1](j=1,2,⋯,n-1)上是三次多项式,于是S"(x)在[xj,xj+1]上是一次多项式,如果S"(x)在[xj,xj+1](j=1,2,⋯,n-1)两端点上的值已知,设S"(xj)=Mj,S"(xj+1)=Mj+1,其中hj=xj+1-xj,对S"(x)进行两次积分,则得到1个具有2个任意常数Aj,Bj的S(x)表达式。

对S"(x)求两次积分

4三次样条插值函数的Matlab程序设计

在Matlab[3]环境下根据上述算法步骤进行编

程,源程序如下:

function[]=spline3(X,Y,dY,x0,m)

N=size(X,2);

s0=dY

(1);sN=dY

(2);

interval=0.025;

disp('x0为插值点')

x0

h=zeros(1,N-1);

fori=1:

N-1h(1,i)=X(i+1)-X(i);end

d(1,1)=6*((Y(1,2)-Y(1,1))/h(1,1)-s0)/h(1,1);

d(N,1)=6*(sN-(Y(1,N)-Y(1,N-1))/h(1,N-1))/h(1,N-1);

fori=2:

N-1

d(i,1)=6*((Y(1,i+1)-Y(1,i))/h(1,i)-(Y(1,i)-Y(1,i-1))

/h(1,i-1))/(h(1,i)+h(1,i-1));endmu=zeros(1,N-1);md=zeros(1,N-1);

md(1,N-1)=1;mu(1,1)=1;

fori=1:

N-2

u=h(1,i+1)/(h(1,i)+h(1,i+1));mu(1,i+1)=u;

md(1,i)=1-u;end

p(1,1)=2;q(1,1)=mu(1,1)/2;

fori=2:

N-1

p(1,i)=2-md(1,i-1)*q(1,i-1);q(1,i)=mu(1,i)/p(1,i);end

p(1,N)=2-md(1,N-1)*q(1,N-1);

y=zeros(1,N);y(1,1)=d

(1)/2;

fori=2:

Ny(1,i)=(d(i)-md(1,i-1)*y(1,i-1))/p(1,i);end

x=zeros(1,N);x(1,N)=y(1,N);

fori=N-1:

-1:

1x(1,i)=y(1,i)-q(1,i)*x(1,i+1);end

fprintf('M为三对角方程的解\n');M=x;

fprintf('\n');

symst;

digits(m);

fori=1:

N-1

pp(i)=M(i)*(X(i+1)-t)^3/(6*h(i))+M(i+1)*(t-X(i))^3

/(6*h(i))+(Y(i)-M(i)*h(i)^2/6)*(X(i+1)-t)/h(i)+

(Y(i+1)-M(i+1)*h(i)^2/6)*(t-X(i))/h(i);

pp(i)=simplify(pp(i));coeff=sym2poly(pp(i));

iflength(coeff)~=4

tt=coeff(1:

3);coeff(1:

4)=0;coeff(2:

4)=tt;end

ifx0>X(i)&x0

y0=coeff

(1)*x0^3+coeff

(2)*x0^2+coeff(3)*x0+coeff(4);

end

val=X(i):

interval:

X(i+1);

fork=1:

length(val)

fval(k)=coeff

(1)*val(k)^3+coeff

(2)*val(k)^2+coeff(3)*val(k)+coeff(4);end

ifmod(i,2)==1plot(val,fval,'r+')

elseplot(val,fval,'b.')end

holdon

clearvalfval

ans=sym(coeff,'d');

ans=poly2sym(ans,'t');

fprintf('在区间[%f,%f]内\n',X(i),X(i+1));

fprintf('三次样条函数S(%d)=',i);

pretty(ans);end

fprintf('x0所在区间为[%f,%f]\n',X(L),X(L+1));

fprintf('函数在插值点x0=%f的值为\n',x0);

y0

程序中:

X,Y为输入结点,dY为两端点一阶导数矩阵,x0为待求插值点,m为有效数字位数。

应用实例[1]:

已知函数y=f(x)的函数值如表1。

x0为插值点x0=1.5;M为三对角方程的解M=-5.00004.00004.000016.0000在区间[-1.5,0.0]

内,三次样条函数S

(1)=t3+2t2−1;在区间[0.0,1.0]内,三次样条函数S

(2)=2t2−1;在区间[1.0,2.0]内,三次样条函数S(3)=2t3−4t2+6t−3。

5结论

Matlab环境下编写求解三次样条插值的通用程序,可直接显示各区间段三次样条函数的具体表达式,计算出已给点的插值,最后显示各区间分段曲线图,为三次样条插值函数的应用提供简便方法。

1.3运行结果

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1