《数学之美》读后感.docx

上传人:b****7 文档编号:24977871 上传时间:2023-06-03 格式:DOCX 页数:16 大小:31.08KB
下载 相关 举报
《数学之美》读后感.docx_第1页
第1页 / 共16页
《数学之美》读后感.docx_第2页
第2页 / 共16页
《数学之美》读后感.docx_第3页
第3页 / 共16页
《数学之美》读后感.docx_第4页
第4页 / 共16页
《数学之美》读后感.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

《数学之美》读后感.docx

《《数学之美》读后感.docx》由会员分享,可在线阅读,更多相关《《数学之美》读后感.docx(16页珍藏版)》请在冰豆网上搜索。

《数学之美》读后感.docx

《数学之美》读后感

《数学之美》读后感

《数学之美》读后感

我在想,为什么我们要学习数学?

也许这个问题成年人有一万个答案,可是当我们第一次走进教室,学习数学的时候,大概率还是个孩子,你怎么跟一个孩子解释为什么要学习数学呢?

我把这个问题抛给了一个朋友,他说:

“为了提高思维逻辑能力,这是我初中老师在第一节数学课上告诉我们的”。

或者一位5岁的小朋友又会问:

“什么是逻辑能力呢?

也许从出生第一天,我们就一直在被动的接收一些东西,父母的劝导,老师的传授,可5岁的孩子还是会把玩具散落一地,6岁的孩子仍然会因为父母不给买玩具而嗷嗷大哭,无论你怎么劝导一个人,怎么劝诫一个人,他可能仍然会犯你认为会出现的错误。

我记得有位教育专家这么说:

“你告诉宝宝他把玩具弄坏了,就等于丢了10个棒棒糖”,从此以后这个宝宝可能会更加珍惜玩具。

这个方法很简单,但是貌似最有效。

数学是什么?

数学不就是把复杂的东西简单化么?

现在我们再回答前面的问题:

为什么我要学习数学?

我们可以这么跟5岁的小朋友说:

“妈妈给你10元钱,让你买酱油,酱油7元、棒棒糖1元一个,剩下的钱你可以买几个棒棒糖?

”或许想吃棒棒糖的就会苦思冥想一番,或许未来妈妈真的给他10元钱去买酱油,结果回来就变成了一瓶酱油和3个棒棒糖。

或者再过一段时间,这位小朋友会选择6元的酱油,因为可以获得4个棒棒糖了。

他这么计算着:

7+3和6+4都可以等于10,那么如果要必须买酱油的情况下,1+9也可以等于10。

我们都知道也有1元的袋装酱油,于是9个棒棒糖到手了。

任何知识的魅力都在于自我的发现,只有你对它产生了无限的兴趣,你就会不断的发现它的美,《数学之美》也可以变成《物理之美》。

有些人会说,上面的例子是利益驱动型,不是兴趣驱动型,对于一个孩子来说,你能指望他向成人那样:

“我需要的不是物质世界,我需要的是精神世界?

”。

5岁宝宝最喜欢做得事情就是在吃和玩上面,请问,成年人不也是如此么?

这就是天性。

只不过成年人的自控能力足够大罢了。

我们回到书本上,这本书是否合适自己?

如果没有专业的数学知识,很难读懂。

但是它又有着无限的魅力,让你不自觉的读下去,为什么?

因为“数学之美”,虽然大多数人看不懂里面的公式,但是能够明白数学能解决的问题:

概率统计学能够解决自然语言处理、布尔代数能解决搜索引擎的问题、有限状态机和动态规划能解决地图问题、向量+特征向量+余弦定理能解决自动新闻分类问题、最大熵模型解决金融问题,看着看着我就莫名的产生了一种想要学习算法的冲动,这不就是本书的意义所在么?

1.信息指纹,可以让复杂的数据用简单的一串数字存储

2.13章,提到的简单之美。

当然之后多次提到

3.余弦定理(通过向量+特征向量+余弦定理)可以判断两条数据的相似性

4.17章,简单密码学(对密码感兴趣的可以看看)

5.布隆过滤器,用很少的空间存储大量的数据,从而解决黑名单的问题(黑名单数据量庞大的时候,会增加判断某一个名单是否出现过的难度)。

6.29章,分治算法,虽然没有很明白算法,但是原理其实很简单:

把复杂的东西拆分成若干小的部分,然后进行逐个解决或者说各个击破

7.30章,神经网络,其实没那么神秘,神经就好比一个网络(马尔科夫模型+贝叶斯网络)中的各个节点而已。

那么,对我而言,到底提升了什么境界呢?

首要的肯定是思想境界。

在未读这本书之前,我知道对于这个世界的事件形成的信息集合,人类只有两种方式可以表达,一个是数字,一个是语言。

整个实数的集合是无穷个,而且每个数字都是唯一的;整个世界中的事件也是无穷个的,而且每个事件也时独一无二的,这样数学中的数字集合与世界中的事件集合就构成一个一一对应的关系,所以研究数字之间的关系,实际上就是在研究世界中事件之间的关系。

语言中的概念和世界中的事件之间也是可以构成一个对应关系的,但问题是,语言中概念的集合是有限的,所以它和数字集合的对应显然只能是部分对应。

计算机科学的发展,人类需要把语言处理成数字,因为计算机只能识别数字信号,所以“语言的数字化”成为计算机产生以来发展最快、而且最有创新性的领域,而许多华人科学家成为了这个领域的顶尖专家,如李开复,吴军博士是卓越的科学家之一。

至此我才感到,在计算机主导的世界中,信息化就是数字化,而最难的数字化、也是最有成就的数字化,就是对人类自然语言的数字化,因为人类的信息几乎100%是用语言承载、传播的,计算机要与人对话,变成智能化的机器,首先要解决的就是语言的数字化问题。

但我们在电脑上自如地输入文字时、或者拿着手机通话时,我们跟本没有意识到,那些卓越的语言科学家,早已经把我们的语言,转化成数字信号,通过输入、处理、解码的方式,让我们无障碍地联络、工作。

我似乎感到,语言与数字的关系,就是人与自然关系的接口。

套用古希腊毕达哥拉斯学派的观点,加上我的理解,即是,数是万物的本原,语言是人的本原!

吴军博士似乎也在提升我对方法的认识境界。

科学研究的思考方式,习惯遵循本质、规律、连续性思维,在语言学研究的早期,人类为了让计算机识别语言,采用建立语言规则和语言规则数据库的办法,但最终以失败告终(20世纪50-70年代),70年代后科学家采用了语言统计模型,研究取得了突飞猛进。

语言统计模型的胜利,再一次证明了宇宙量子模型的信念,世界是不连续的随机性的粒子构成,人类数千年文明进化出来的语言系统,就是动态的随机概率事件。

其二,物理思维再也难逃牛顿的经典本质思维方法,即找寻到百分之百确定性的规律,而信息论思维是研究如何把握不确定性现象,利用概率统计是不二法门。

其三,语言本质上就是信息传播,只有从通信模型视角才能真正理解计算机的功能,对语言的编码、处理、传输、解码是计算机的强项,计算机是永远不可能理解语言的意思的。

在《数学之美》中,吴军博士对他的老师、师兄弟、同事的经历、掌故进行了叙述,让我们了解到这些世界一流的学科家、技术精英们的为人处世品质、鲜明个性、科学素养及其管理风格。

例如贾里尼克对博士生的严酷淘汰,马库斯对学生的宽宏大度,但我感到他们有一样东西是共同的,就是对科学创造、顶尖人才的识别和器重,甚至是无条件的包容。

如此为人的境界才是根本,因为伟大的科学创造毕竟是人做出来的,只有崇高的人文精神之下才能造就顶尖的人才、一流的科学和技术。

观国内的学说界,官风盛行、人情充斥,与这些一流学说群对科学创造的赏识、对个性人才的包容,对科学探索的热诚,可谓相去甚远。

看来,我们只能寄希望于年轻一代,但愿吴博士的《数学之美》,能让我们的学子们,初步体验到科学精英们卓越的才智与情怀。

第8章里的“索引”,作者讲到谷歌面试产品经理的一道题目:

如何向你的奶奶解释搜索引擎。

关于这个问题,好的回答据说是用图书馆的索引卡片做类比。

我奶奶是个文盲,一生为农,日出而作,日落而息。

她很少看电视,更别说图书馆。

所以用图书馆的例子,对我们来说,很生动;对她来说,很生涩。

我们村的田地是按照地形、土质和流水等来划分的,计有一等地、二等地和三等地。

一般情况下,一等地用来种水稻,二等地用来种菜,三等地用来种水果。

所以当我奶奶想要给我摘桔子的时候,她肯定不会从一等地或者二等地一块地一块地找过来,而是直接跑到三等地(一般就是山上)。

像这样的索引,是基于脑子里的“数据库”,因为田地不会很多,多了也来不及种,所以跟布尔代数没什么关系。

但是这样解释,我奶奶就会大概明白了。

我奶奶生前一次电脑也没用过,跟她解释这些,唯一的意义是,她会觉得我没有敷衍她,这会使她欣慰——如果有机会解释的话。

杨小凯曾经说,如果张五常多加注重使用数学模型,那诺奖也许就拿下了。

张五常对此不以为然,反以为傲,自诩当今世上只有科斯、阿尔钦和他才敢只用文字,不借助数学模型就在经济学界占有一席之地。

当然,张五常也不是彻底否定数学的作用,他认为能够用文字解释的经济学原理,不必使用数学对其复杂化。

数学在信息学和经济学里都有广泛应用,但是在信息科学方面,对数学作用大小的争论就没有经济学那么大了。

我们常说搜索引擎的竞价广告,就可能经历到第三方公司,通常他们宣传自己是谷歌或者别的搜索引擎公司的代理商,然后通过不正当手段为客户提高网页的排名。

谷歌在消除网络作弊方面做了很多努力,通过修改排序算法来为搜索者提供更加准确实效的信息。

“作弊的本质是在网页排名信号中加入噪音,因此反作弊的关键是去噪音。

沿着这个思路可以从根本上提高搜索算法抗作弊的能力。

”我们公司就是吃了这个亏,交了不少钱给第三方公司,结果算法一变,关键词的排名从前三下降到前三页没影。

社交搜索正在雄起,但是如果想要在传统的搜索引擎中占据有利排名,我想,第三方公司的技术水平是很关键的。

大学专业课里,数电总是要比模电简单不少。

自然界里大部分的信号都属于模拟信号。

所谓模拟信号,是指时间和数值上都是连续变化的信号。

在实际电路中,模/数转换是一个很重要的过程,将预处理的模拟信号经过模/数变换为数字信号,然后进行数字信号处理。

而数字化处理有很多优点,比如功能强大、抗干扰能力强、易集成化等。

简而言之,如果没有数学,就没有数字信号处理的概念,也就无法进行信号的传输,而数字信号传输在大规模的集成电路里是必不可少的,这是通信成功的基本要求。

之前看到有人说如果高中看这本书,也许数学就是另一番天地,会有所突破。

我不觉得,如果高中看这种书,我想,大多数人还是会对数学更加望而却步。

本书更适合通信电子这些专业的学生,在学习专业课的时候辅助阅读,对理解通信原理、数电模电等都有更形象生动的想法。

看完《浪潮之巅》,了解了硅谷很多公司尤其是互联网公司的沉浮,对吴军的书就非常感兴趣,看到吴军的另一本书《数学之美》,激起了很深的兴趣,所以很快把书看完了,普及了很多基础的知识的同时也启发了很多想法,感觉很爽。

我自己在交大学的是工科(虽然没怎么上过课),小学、初中、高中都是一路参加数学竞赛,名次都还不错,也因此没有参加中考、高考,一路保送,自己对数学有很深的感情,同时女朋友大学也是数学系,有点后悔的大学选了个并不感兴趣的专业(交大当时允许我随便选专业,我没有跟父母商量自己选了船舶制造)。

看这本书的过程中找到了很多高中在看竞赛书的感觉,里面提到的很多概率论(不等式)、图论、数论的知识是高中数学联赛复试的重点,高中的时候已经研究的很深了,不过大学荒废了之后也忘得差不多了,书中提到的很多定理还很有亲切感

书名叫做《数学之美》,显得有些太大,毕竟更多的是吴军在google做搜索相关工作用到的数学模型的介绍与总结,提到的数学部分大多集中在概率论、图论、数论领域,所以书名太大了,可能hax说得对,也许是出版社为了卖书取得名字

不得不说吴军是一个大家,文字中能够透露出大家的气势,书中不断的穿插着各种历史上的大科学家以及科技领域的大家的小故事甚至八卦,从文字中非常能够感受到吴军是一个和他们一个层次的人(即使他自己会自谦说是一个二流的工程师之类)

书中具体的模型就不介绍了,说几点我学到的知识(仅仅皮毛),能列出来的都是看完还有点印象的:

1.在互联网的世界中,信息是如何量化的,信息熵是怎么回事?

有啥用?

2.搜索领域中,语言是如何统计的,尤其是如何通过概率模型进行分词

3.搜索引擎是如何工作的—网络爬虫是怎么回事儿

4.PageRank是怎么回事?

为了解决什么问题?

5.密码与解密领域的数学模型,尤其提到的二战时候的各种解密的趣事儿,提到的电视剧《暗算》打算抽空看下

6.拼音输入法的数学模型

7.、文本自动分类的模型

……

看完之后最大的感受就是:

1.数学模型巨大作用,推动着新技术的发展

2.攻城师是一个伟大的职业,能够运用这些知识转化为生产力,非常牛叉

3.书中提到了很多数学模型都是在不断的进化、改良、升级,也就是说有人不断的在做优化,会有不断更好的模型、更新的技术出现,跟得上技术的发展可能也是比较重要的,否则很多人一直在做某一点上的持续优化就没有意义了。

但同时技术很大的作用是用来解决实际问题的,书中提到的各个数学模型、各种方法都是为了解决人们的需求或者业务的需求,毕竟公司不是科学研究所,所以追求通过技术直接解决用户需求或者做成易用的工具给业务人员、运营人员来间接解决用户需求是挺重要的,可能不是技术人员觉得做到80分就可以了,而是用户、使用工具的人觉得做到80分是一个重要的衡量

提到“工具”,想到赵赵说过的一句话:

“不好用就等于没有”,可能就是这个点,同时运用工具的人必须好好的运用,如果用不好甚至不用就太对不起技术了

上个月去北京开会,顺道拜访了人民邮电出版社,合作多年的编辑陈冀康赠我一本《数学之美》,说一定是我喜欢看的类型。

以前也在网上零散看过Google黑板报上吴军先生的文章,对他的前一本书《浪潮之颠》也有耳闻,但没有读过。

这次有机会集中阅读他的文章,确实是一段美妙的体验。

读完这本书有一点强烈的感受:

工具一定要先进。

数学是强大的工具,计算机也是。

这两种工具结合在一起,造就了强大的google、XX、亚马逊、阿里、京东、腾迅等公司。

他们不是百年老店,但他们掌握了先进的工具。

掌握了先进的工具,必将获得竞争优势。

如果你知道哪里有一群软件工程师,维护着更大的一群计算机,那么不要犹豫,想办法使用他们提供的服务,因为这会给你带来优势。

所以我们使用Google的搜索和邮件,在亚马逊、京东和淘宝上购物,用QQ和微博联系朋友,使用银行卡和网上银行,利用交易终端在全球市场上进行各种交易……

人类历史就是一部工具的进化史。

石器、青铜、铁器、火药、蒸汽机、内燃机、电报、电话、电视、计算机、卫星、互联网,工具的进步引领着文明的进步。

新的工具不断淘汰老的工具,就像互联网视频点播正在淘汰电视、微博正在淘汰报纸、电子书正在淘汰纸质书那样。

但有一些古老的工具,今天仍有人在学习和使用,甚至在上面花费许多时间。

毛笔就是这样一个例子。

今天学习掌握毛笔这种“落后的”工具,还有什么意义?

其实我们在使用一些“落后的”工具时,主要是在学习工具背后的思想。

书法和绘画中蕴含的艺术审美的一般原则,经得起具体工具变迁的考验。

甲骨文、金文、石鼓文所包含的对空间构图的理解,仍然值得现代人学习。

思想工具是比实物工具更强大的工具。

工具组合使用,形成更强大的新工具。

《数学之美》中提到的马尔可夫链虽然是很强大的工具,但我在数学课上没有听老师提到过。

这本书中给我印象最深的例子是余弦定理和新闻分类。

余弦定理是中学数学,再加上一些不算很难的多维向量的知识,竟然解决了计算机新闻分类这样的难题!

每一种工具的背后,是人们对世界的一种理解。

蒸汽机和内燃机背后,是力学的世界。

电报、电话、电视、计算机和互联网背后,是信息的世界。

数学是抽象的工具,是其他工具背后的工具。

每一门学科要成为科学,都少不了数学。

也许有一天人们会习惯,用数学工具来分析艺术。

数学是一种语言,它源于具体的世界,又高于具体的世界。

如果说语言是对世界的认识和描述,如果说数学是一种语言,那么它一定是最接近神的语言。

看似毫不相关,却又能描述万事万物。

学习数学有什么用?

物理学家费曼当年在大一时提出这个问题,他的师兄建议他转到物理系。

今天,这个问题已不成为问题。

具有扎实数学功底的人才正进入各行各业,例如金融业。

我认识一个出版社的老总,他招应届毕业生有一个条件:

数学要好。

工具虽好,关键还要会用。

最终要回到掌握先进工具的人。

软件算法工程师加上计算机集群,这是目前一流企业必需的装备。

正如马克.安德森所说的,各行各业的一流公司,都是软件公司。

优秀的软件算法工程师,是人才争夺的焦点。

这样,我们就容易理解Google招工程师的要求。

对信息加工处理和传递的能力不断增强,是知识经济的特点。

《数学之美》展示了Google如何运用数学和计算机网络,带领我们进入云计算和大数据时代。

知识经济时代的工作,就是在各自的领域中进行科学研究。

科学研究要大胆假设,小心求证。

科学研究要量化。

科学研究要有对比实验。

科学研究要有数学模型。

科学研究要有田野调查。

科学研究要有文献查证。

科学研究要有同行评议。

《数学之美》向我们介绍了自然语言分析领域的科研方法和过程。

任何一个领域,深入进去都有无数的细节。

有兴趣的人不但没被这些细节吓倒,反而会兴致勃勃地研究,从而达到令人仰慕的高度。

吴军先生向我们展示了数学和算法中的这些细节,也展示了他所达到的高度。

值得我学习。

感谢吴军先生分享他的知识和深刻见解,也感谢人民邮电出版社出了这样一本好书。

确切的来说,《数学之美》并不是一本书,它是谷歌黑板报中的一系列文章,介绍数学在信息检索和自然语言处理中的主导作用和奇妙应用,每一篇文章都不长,但小中见大,从看似高深的高科技中用通俗易懂的案例展示了数学之美,深深的吸引了我。

这一系列文章的作者是google公司的科学家吴军。

他毕业于清华大学计算机系(本科)和电子工程系(硕士),并于1993-1996年在清华任讲师。

他于1996年起在美国约翰霍普金斯大学攻读博士,并于XX年获得计算机科学博士学位。

在清华和约翰霍普金斯大学期间,吴军博士致力于语音识别、自然语言处理,特别是统计语言模型的研究。

他曾获得1995年的全国人机语音智能接口会议的最佳论文奖和XX年eurospeech的最佳论文奖。

吴军博士于XX年加入google公司,现任google研究院资深研究员。

到google不久,他和三个同事们开创了网络搜索反作弊的研究领域,并因此获得工程奖。

XX年,他和两个同事共同成立了中日韩文搜索部门。

吴军博士是当前google中日韩文搜索算法的主要设计者。

在google其间,他领导了许多研发项目,包括许多与中文相关的产品和自然语言处理的项目,并得到了公司首席执行官埃里克.施密特的高度评价。

吴军博士在国内外发表过数十篇论文并获得和申请了近十项美国和国际专利。

他于XX年起,当选为约翰霍普金斯大学计算机系董事会董事。

正是他在信息检索与自然语言处理领域中的一系列工作,使他讲述了我所看到的内容-数学之美。

看了数学之美,立即联想到了金庸小说中的武林高人,总是把一套大多数人都会的入门功夫使得威力无比,击溃众多敌者。

东西放在那,它的威力如何,并键在于使用者,武术如此,数学同样如此。

于我而言,语音视别是一类高科技,作为非专业人土,深觉高奥。

但看完数学之美之后,顿感惊诧,原来如此深奥东西的解决方法自己也学过,并且理工科读过大学的人都学过,那就是统计学中的条件概率p(a/b),即b事件发生条件下a事件发生的概率。

如果s表示一连串特定顺序排列的词w1,w2,…,wn,换句话说,s可以表示某一个由一连串特定顺序排练的词而组成的一个有意义的句子。

现在,机器对语言的识别从某种角度来说,就是想知道s在文本中出现的可能性,也就是数学上所说的s的概率用p(s)来表示。

利用条件概率的公式,s这个序列出现的概率等于每一个词出现的概率相乘,于是p(s)可展开为:

p(s)=p(w1)p(w2|w1)p(w3|w1w2)…p(wn|w1w2…wn-1)

其中p(w1)表示第一个词w1出现的概率;p(w2|w1)是在已知第一个词的前提下,第二个词出现的概率;以次类推。

不难看出,到了词wn,它的出现概率取决于它前面所有词。

从计算上来看,各种可能性太多,无法实现。

因此我们假定任意一个词wi的出现概率只同它前面的词wi-1有关(即马尔可夫假设),于是问题就变得很简单了。

现在,s出现的概率就变为:

p(s)=p(w1)p(w2|w1)p(w3|w2)…p(wi|wi-1)…

(当然,也可以假设一个词又前面n-1个词决定,模型稍微复杂些。

接下来的问题就是如何估计p(wi|wi-1)。

现在有了大量机读文本后,这个问题变得很简单,只要数一数这对词(wi-1,wi)在统计的文本中出现了多少次,以及wi-1本身在同样的文本中前后相邻出现了多少次,然后用两个数一除就可以了,p(wi|wi-1)=p(wi-1,wi)/p(wi-1)。

也许很多人不相信用这么简单的数学模型能解决复杂的语音识别、机器翻译等问题。

其实不光是常人,就连很多语言学家都曾质疑过这种方法的有效性,但事实证明,统计语言模型比任何已知的借助某种规则的解决方法都有效。

比如在google的中英文自动翻译中,用的最重要的就是这个统计语言模型。

去年美国标准局(nist)对所有的机器翻译系统进行了评测,google的系统是不仅是全世界最好的,而且高出所有基于规则的系统很多。

这就是数学的美妙之处了,它把一些复杂的问题变得如此的简单。

看到《数学之美》,在感叹数学的美妙与神奇之处时,自然而然联系到自己专业(地质工程而或岩土工程)中的数学应用。

现在找文献,搜索期刊一大堆基于数学的专业文献,灰色数学的、模糊数学的、非线性的、系统的,等等,这么多的数学的使用,促进了一大批的文章,但这些数学方法的应用究竟是发现了哪些问题?

还是解决了实际问题吗?

还是仅发了文章,满足了需求?

现实是文章好发,用着难用,解决问题还得传统的方法,那么是这些数学方法不行,还是用的太肤浅,根本没发挥其威力来?

如果没有发挥出威力来,那怎么用?

怎么发挥?

前一阵子因兴趣研究CMUSphinx这套库的应用不得要领,就去查看了下一些语音识别的基本原理的文章,偶然碰到了数学之美。

其实浪潮之巅也是因此开始看的、结果先一步看完了,毕竟一本历史书,一本介绍数学和语言处理的,难度不同

说实话,因为初中高中荒废了太多时间,我的英文和数学基础比较差,我大学的数学都是勉强修过的。

一直以来数学对我是一个很恐怖的学科,也不知道为什么计算机专业对数学要求比较高。

我个人就是数学分数很低,但是专业课学的还不错,唯一好点的数学科目就是离散数学吧,另外的工科数学分析和高等代数都是惨不忍睹的

看完这本书后,我发现我还真是低估了数学的作用,一个复杂的语言识别过程,用统计语言模型竟然用那么简单的数学模型就解决了,这对我的冲击很大。

另一个对我影响比较大的就是余弦定理和新闻的分类。

以前那些各种三角函数的变换、三角函数,各种向量,各种空间图形在我印象中就只能用于画设计图,或者搞空间物理化学等基础学科的应用上,想着“这种东西和计算机编程有什么关系?

要计算角度,库里不都提供了吗?

”,哪成想到改变一下思路,改变一下方法,就简单的把那么复杂的分裂问题给解决了。

现在想想我当初想法还真是幼稚啊,可惜覆水难收,过去的时间已经回不来了,但至少我现在明白了数学的重要性,总能想办法弥补的。

不得不说国内的教科书还真是太死板了。

很多书上,先不说没讲应用领域和这个能干吗,有些教科书连推导过程也没说明白。

像我大学时候的那几本高代高数的教科书,在某一步关键的过程写一句“显而易见”,然后就莫名其妙的出现了结果,这让我们基础差的人情何以堪啊,更何况我问了那些数学好的,他们想推导出那一步也要想好久。

后来换了一下同济大学版,发现同样的定理,同样的范围,就是理解起来容易了不少。

果然好书和差一点的书差别真不少。

所以我就在网上整理了一些好的数学书籍,等会儿x就贴到文后,以后慢慢补。

"技术分为术和道两种,具体的做事方法是术,做事的原理和原则是道。

这本书的目的是讲道而不是讲术。

很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。

只有掌握了搜索的本质和精髓才能永远游刃有余。

”,然后吴军先生用搜索反作弊的例子漂亮的解释了这两种差别。

我以前做过的项目里,如果出现没想过的情况,就加一个异常处理处理特殊情况,本来很简单的东西,愣是被我搞复杂了。

现在想回来,那时候境界太低,连开始的本质和原理都没弄清楚,就埋头搞下去了,以后要多注意点。

我一向喜欢实用性强的方法和工具,在这书里我特别喜欢阿米特·辛格博士的那一章。

吴军博士就用寥寥几页的描述中讲解了辛格博士的处理事情的方法和原则,先帮用户解决主要的问题,再决定要不要纠结在次要的部分上;要知道修改代码的所作所为,知其所以然;能用简单方法解决就用简单的,可读性很重要。

不过中间有两个部分没搞明白,最大熵模型和贝叶斯网络,没搞懂为什么能解决那些问题。

贝叶斯网络还能稍微理解,少了马尔科夫链的线性约束,更自由;但最大熵模型真搞不懂为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 冶金矿山地质

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1