大数据外文翻译参考文献综述.docx

上传人:b****1 文档编号:248956 上传时间:2022-10-07 格式:DOCX 页数:15 大小:20.69KB
下载 相关 举报
大数据外文翻译参考文献综述.docx_第1页
第1页 / 共15页
大数据外文翻译参考文献综述.docx_第2页
第2页 / 共15页
大数据外文翻译参考文献综述.docx_第3页
第3页 / 共15页
大数据外文翻译参考文献综述.docx_第4页
第4页 / 共15页
大数据外文翻译参考文献综述.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

大数据外文翻译参考文献综述.docx

《大数据外文翻译参考文献综述.docx》由会员分享,可在线阅读,更多相关《大数据外文翻译参考文献综述.docx(15页珍藏版)》请在冰豆网上搜索。

大数据外文翻译参考文献综述.docx

大数据外文翻译参考文献综述

大数据外文翻译参考文献综述

(文档含中英文对照即英文原文和中文翻译)

原文:



DataMiningandDataPublishing

Data miningisthe extraction ofvast interestingpatterns orknowledge from huge amount of data. The initial idea ofprivacy-preservingdataminingPPDMwastoextendtraditionaldataminingtechniquestoworkwiththedatamodifiedtomasksensitiveinformation.Thekeyissueswerehowtomodifythedataandhowtorecoverthedataminingresultfromthemodifieddata.Privacy-preservingdataminingconsiderstheproblemofrunningdataminingalgorithmsonconfidentialdatathatisnotsupposedtoberevealedeventotheparty

runningthealgorithm.Incontrast,privacy-preservingdatapublishing(PPDP)maynotnecessarilybetiedtoaspecificdataminingtask,andthedataminingtaskmaybeunknownatthetimeofdatapublishing.PPDPstudieshowtotransformrawdataintoaversionthatisimmunizedagainstprivacyattacksbutthatstillsupportseffectivedataminingtasks.Privacy-preservingforbothdatamining(PPDM)anddatapublishing(PPDP)hasbecomeincreasinglypopularbecauseitallowssharingofprivacysensitivedataforanalysispurposes.Onewellstudiedapproachisthek-anonymitymodel[1]whichinturnledtoothermodelssuchasconfidencebounding,l-diversity,t-closeness,(α,k)-anonymity,etc.Inparticular,allknownmechanismstrytominimizeinformationlossandsuchanattemptprovidesaloopholeforattacks.Theaimofthispaperistopresentasurveyformostofthecommonattackstechniquesforanonymization-basedPPDM&PPDPandexplaintheireffectsonDataPrivacy.

Althoughdataminingispotentiallyuseful,manydataholdersarereluctanttoprovidetheirdatafordataminingforthefearofviolatingindividualprivacy.Inrecentyears,studyhasbeenmadetoensurethatthesensitiveinformationofindividualscannotbeidentifiedeasily.

AnonymityModels,k-anonymizationtechniqueshavebeenthe

focusofintenseresearchinthelastfewyears.Inordertoensureanonymizationofdatawhileatthesametimeminimizingtheinformation

lossresultingfromdatamodifications,everalextendingmodelsareproposed,whicharediscussedasfollows.

1.k-Anonymity

k-anonymityisoneofthemostclassicmodels,whichtechniquethatpreventsjoiningattacksbygeneralizingand/orsuppressingportionsofthereleasedmicrodatasothatnoindividualcanbeuniquelydistinguishedfromagroupofsizek.Inthek-anonymoustables,adatasetisk-anonymous(k≥1)ifeachrecordinthedatasetisin -distinguishablefromatleast(k.1)otherrecordswithinthesamedataset.Thelargerthevalueofk,thebettertheprivacyisprotected.k-anonymitycanensurethatindividualscannotbeuniquelyidentifiedbylinkingattacks.

2.ExtendingModels

Sincek-anonymitydoesnotprovidesufficientprotectionagainstattributedisclosure.Thenotionofl-diversityattemptstosolvethisproblem byrequiring that each equivalence class has at least lwell-representedvalueforeachsensitiveattribute.Thetechnologyofl-diversityhassomeadvantagesthank-anonymity.Becausek-anonymitydatasetpermitsstrongattacksduetolackofdiversityinthesensitiveattributes.Inthismodel,anequivalenceclassissaidtohavel-diversityifthereareatleastlwell-representedvalueforthesensitiveattribute.Becausetherearesemanticrelationshipsamongtheattributevalues,anddifferent values have very different levels of sensitivity. After

anonymization,inanyequivalenceclass,thefrequency(infraction)ofasensitivevalueisnomorethanα.

3.RelatedResearchAreas

Severalpollsshowthatthepublichasanin-creasedsenseofprivacyloss.Sincedataminingisoftenakeycomponentofinformationsystems,homelandsecuritysystems,andmonitoringandsurveillancesystems,itgivesawrongimpressionthatdataminingisatechniqueforprivacyintrusion.Thislackoftrusthasbecomeanobstacletothebenefitofthetechnology.Forexample,thepotentiallybeneficialdataminingre-searchproject,TerrorismInformationAwareness(TIA),wasterminatedbytheUSCongressduetoitscontroversialproceduresofcollecting,sharing,andanalyzingthetrailsleftbyindividuals.Motivatedbytheprivacyconcernsondataminingtools,aresearchareacalledprivacy-reservingdatamining(PPDM)emergedin2000.TheinitialideaofPPDMwastoextendtraditionaldataminingtechniquestoworkwiththedatamodifiedtomasksensitiveinformation.Thekeyissueswerehowtomodifythedataandhowtorecoverthe dataminingresultfromthemodifieddata.

Thesolutionswereoftentightlycoupledwiththedataminingalgorithmsunderconsideration.Incontrast,privacy-preservingdatapublishing(PPDP)maynotnecessarilytietoaspecificdataminingtask,andthedataminingtaskissometimesunknownatthetim

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1