单片机课程设计报告-数字温度计.doc

上传人:b****1 文档编号:247582 上传时间:2022-10-07 格式:DOC 页数:10 大小:124KB
下载 相关 举报
单片机课程设计报告-数字温度计.doc_第1页
第1页 / 共10页
单片机课程设计报告-数字温度计.doc_第2页
第2页 / 共10页
单片机课程设计报告-数字温度计.doc_第3页
第3页 / 共10页
单片机课程设计报告-数字温度计.doc_第4页
第4页 / 共10页
单片机课程设计报告-数字温度计.doc_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

单片机课程设计报告-数字温度计.doc

《单片机课程设计报告-数字温度计.doc》由会员分享,可在线阅读,更多相关《单片机课程设计报告-数字温度计.doc(10页珍藏版)》请在冰豆网上搜索。

单片机课程设计报告-数字温度计.doc

单片机课程设计报告

数字温度计

专业班级应教022班  

姓  名李世朋

时间16周~18周

指导教师李国厚苗青林 邵峰

20005年12月29日

1设计要求

■基本范围-50℃-110℃

■精度误差小于0.5℃

■LED数码直读显示

2扩展功能

■实现语音报数

■可以任意设定温度的上下限报警功能 

 

数字温度计

应教022李世朋

摘要:

随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。

关键词:

单片机,数字控制,温度计,DS18B20,AT89S51

1引言

随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。

本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。

2总体设计方案

2.1数字温度计设计方案论证

2.1.1方案一

由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

2.1.2方案二

进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。

2.2方案二的总体设计框图

温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。

主控制器

LED显示

温度传感器

单片机复位

时钟振荡

报警点按键调整

图1 总体设计方框图

2.2.1主控制器

单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。

2.2.2显示电路

显示电路采用3位共阳LED数码管,从P3口RXD,TXD串口输出段码。

2.2.3温度传感器

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

DS18B20的性能特点如下:

●独特的单线接口仅需要一个端口引脚进行通信;

●多个DS18B20可以并联在惟一的三线上,实现多点组网功能;

●无须外部器件;

●可通过数据线供电,电压范围为3.0~5.5V;

●零待机功耗;

●温度以9或12位数字;

●用户可定义报警设置;

●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;

●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;

DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图2所示。

C

64

ROM

线

高速缓存

存储器与控制逻辑

温度传感器

高温触发器TH

低温触发器TL

配置寄存器

8位CRC发生器

Vdd

I/O

图2DS18B20内部结构

64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。

温度报警触发器TH和TL,可通过软件写入户报警上下限。

DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。

高速暂存RAM的结构为8字节的存储器,结构如图3所示。

头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。

第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。

DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。

该字节各位的定义如图3所示。

低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率。

温度LSB

温度MSB

TH用户字节1

TL用户字节2

配置寄存器

保留

保留

保留

CRC

图3 DS18B20字节定义

由表1可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。

因此,在实际应用中要将分辨率和转换时间权衡考虑。

高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。

第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。

单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。

当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。

表2是一部分温度值对应的二进制温度数据。

表1DS18B20温度转换时间表

DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。

若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。

因此,可用多只DS18B20同时测量温度并进行报警搜索。

在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。

主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。

DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。

器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。

计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1、温度寄存器中,计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。

其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。

表2 一部分温度对应值表

温度/℃

二进制表示

十六进制表示

+125

0000011111010000

07D0H

+85

0000010101010000

0550H

+25.0625

0000000110010000

0191H

+10.125

0000000010100001

00A2H

+0.5

0000000000000010

0008H

0

0000000000001000

0000H

-0.5

1111111111110000

FFF8H

-10.125

1111111101011110

FF5EH

-25.0625

1111111001101111

FE6FH

-55

1111110010010000

FC90H

另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。

系统对DS18B20的各种操作按协议进行。

操作协议为:

初使化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。

图4DS18B20与单片机的接口电路

2.3DS18B20温度传感器与单片机的接口电路

DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。

另一种是寄生电源供电方式,如图4所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。

当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。

采用寄生电源供电方式时VDD端接地。

由于单线制只有一根线,因此发送接口必须是三态的。

2.4系统整体硬件电路

2.4.1主板电路

系统整体硬件电路包括,传感器数据采集电路,温度显示电路,上下限报警调整电路,单片机主板电路等,如图5所示。

图5中有三个独立式按键可以分别调整温度计的上下限报警设置,图中蜂鸣器可以在被测温度不在上下限范围内时,发出报警鸣叫声音,同时LED数码管将没有被测温度值显示,这时可以调整报警上下限,从而测出被测的温度值。

图5中的按健复位电路是上电复位加手动复位,使用比较方便,在程序跑飞时,可以手动复位,这样就不用在重起单片机电源,就可以实现复位。

2.4.2显示电路

显示电路是使用的串口显示,这种显示最大的优点就是使用口资源比较少,只用p3口的RXD,和TXD,串口的发送和接收,四只数码管采用74LS164右移寄存器驱动,显示比较清晰。

图5单片机主板电路

图6温度显示电路

3系统软件算法分析

系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等。

3.1主程序

主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。

这样可以在一秒之内测量一次被测温度,其程序流程见图7所示。

Y

发DS18B20复位命令

发跳过ROM命令

发读取温度命令

读取操作,CRC校验

9字节完?

CRC校验正?

确?

移入温度暂存器

结束 

N

N

Y

初始化

调用显示子程序

1S到?

初次上电

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 初中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1