Temp联梁型钢悬挑脚手架计算书.docx

上传人:b****2 文档编号:24558190 上传时间:2023-05-28 格式:DOCX 页数:18 大小:170.94KB
下载 相关 举报
Temp联梁型钢悬挑脚手架计算书.docx_第1页
第1页 / 共18页
Temp联梁型钢悬挑脚手架计算书.docx_第2页
第2页 / 共18页
Temp联梁型钢悬挑脚手架计算书.docx_第3页
第3页 / 共18页
Temp联梁型钢悬挑脚手架计算书.docx_第4页
第4页 / 共18页
Temp联梁型钢悬挑脚手架计算书.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

Temp联梁型钢悬挑脚手架计算书.docx

《Temp联梁型钢悬挑脚手架计算书.docx》由会员分享,可在线阅读,更多相关《Temp联梁型钢悬挑脚手架计算书.docx(18页珍藏版)》请在冰豆网上搜索。

Temp联梁型钢悬挑脚手架计算书.docx

Temp联梁型钢悬挑脚手架计算书

联梁型钢悬挑脚手架计算书

型钢悬挑扣件式钢管脚手架的计算依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)、《建筑结构荷载规范》(GB50009-2001)、《钢结构设计规范》(GB50017-2003)等规范编制。

一、参数信息:

1.脚手架参数

双排脚手架搭设高度为15.0米,立杆采用单立杆;

搭设尺寸为:

立杆的纵距为1.500米,立杆的横距为1.050米,大小横杆的步距为1.800米;内排架距离墙长度为0.3米;

大横杆在上,搭接在小横杆上的大横杆根数为2根;

采用的钢管类型为φ48×3.5;

横杆与立杆连接方式为单扣件;取扣件抗滑承载力系数为0.80;

连墙件采用二步二跨,竖向间距3.6米,水平间距3米,采用扣件连接;连墙件连接方式为双扣件;

2.活荷载参数

施工均布活荷载标准值:

2.000kN/m2;脚手架用途:

结构脚手架;

同时施工层数:

2层;

3.风荷载参数

本工程地处河北省唐山市,基本风压为0.400kN/m2;

风荷载高度变化系数μz为0.740,风荷载体型系数μs为0.645;

脚手架计算中考虑风荷载作用;

4.静荷载参数

每米立杆承受的结构自重标准值(kN/m2):

0.1248;

脚手板自重标准值(kN/m2):

0.300;栏杆挡脚板自重标准值(kN/m2):

0.150;

安全设施与安全网(kN/m2):

0.005;脚手板铺设层数:

6;

脚手板类别:

竹笆片脚手板;栏杆挡板类别:

栏杆、竹笆片脚手板挡板;

5.水平悬挑支撑梁

悬挑水平钢梁采用16a号槽钢,其中建筑物外悬挑段长度1.50米,建筑物内锚固段长度2.30米。

悬挑水平钢梁上面的联梁采用14a号槽钢槽口水平。

与楼板连接的螺栓直径(mm):

20.00;

楼板混凝土标号:

C35;

主梁间距相当于立杆间距的倍数:

2.00倍;

6.拉绳与支杆参数

支撑数量为:

1;

钢丝绳安全系数为:

6.000;钢丝绳与墙距离为(m):

3.000;悬挑水平钢梁采用钢丝绳与建筑物拉结,最里面面钢丝绳距离建筑物1.2m。

二、大横杆的计算:

按照《扣件式钢管脚手架安全技术规范》(JGJ130-2001)第5.2.4条规定,大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。

将大横杆上面的脚手板自重和施工活荷载作为均布荷载计算大横杆的最大弯矩和变形。

1.均布荷载值计算

大横杆的自重标准值:

P1=0.038kN/m;

脚手板的自重标准值:

P2=0.300×1.050/(2+1)=0.105kN/m;

活荷载标准值:

Q=2.000×1.050/(2+1)=0.700kN/m;

静荷载的设计值:

q1=1.2×0.038+1.2×0.105=0.172kN/m;

活荷载的设计值:

q2=1.4×0.700=0.980kN/m;

图1大横杆设计荷载组合简图(跨中最大弯矩和跨中最大挠度)

图2大横杆设计荷载组合简图(支座最大弯矩)

2.强度验算

跨中和支座最大弯距分别按图1、图2组合。

跨中最大弯距计算公式如下:

跨中最大弯距为M1max=0.08×0.172×1.5002+0.10×0.980×1.5002=0.251kN.m;

支座最大弯距计算公式如下:

支座最大弯距为M2max=-0.10×0.172×1.5002-0.117×0.980×1.5002=-0.297kN.m;

选择支座弯矩和跨中弯矩的最大值进行强度验算:

σ=Max(0.251×106,0.297×106)/5080.0=58.465N/mm2;

大横杆的最大弯曲应力为σ=58.465N/mm2小于大横杆的抗压强度设计值[f]=205.0N/mm2,满足要求!

3.挠度验算:

最大挠度考虑为三跨连续梁均布荷载作用下的挠度。

计算公式如下:

其中:

静荷载标准值:

q1=P1+P2=0.038+0.105=0.143kN/m;

活荷载标准值:

q2=Q=0.700kN/m;

最大挠度计算值为:

V=0.677×0.143×1500.04/(100×2.06×105×121900.0)+0.990×0.700×1500.04/(100×2.06×105×121900.0)=1.589mm;

大横杆的最大挠度1.589mm小于大横杆的最大容许挠度1500.0/150=10.000mm与10mm,满足要求!

三、小横杆的计算:

根据JGJ130-2001第5.2.4条规定,小横杆按照简支梁进行强度和挠度计算,大横杆在小横杆的上面。

用大横杆支座的最大反力计算值作为小横杆集中荷载,在最不利荷载布置下计算小横杆的最大弯矩和变形。

1.荷载值计算

大横杆的自重标准值:

p1=0.038×1.500=0.057kN;

脚手板的自重标准值:

P2=0.300×1.050×1.500/(2+1)=0.158kN;

活荷载标准值:

Q=2.000×1.050×1.500/(2+1)=1.050kN;

集中荷载的设计值:

P=1.2×(0.057+0.158)+1.4×1.050=1.727kN;

小横杆计算简图

2.强度验算

最大弯矩考虑为小横杆自重均布荷载与大横杆传递荷载的标准值最不利分配的弯矩和

均布荷载最大弯矩计算公式如下:

Mqmax=1.2×0.038×1.0502/8=0.006kN.m;

集中荷载最大弯矩计算公式如下:

Mpmax=1.727×1.050/3=0.605kN.m;

最大弯矩M=0.006+0.605=0.611kN.m;

最大应力计算值σ=M/W=0.611×106/5080.0=120.251N/mm2;

小横杆的最大弯曲应力σ=120.251N/mm2小于小横杆的抗压强度设计值205.000N/mm2,满足要求!

3.挠度验算

最大挠度考虑为小横杆自重均布荷载与大横杆传递荷载的设计值最不利分配的挠度和

小横杆自重均布荷载引起的最大挠度计算公式如下:

Vqmax=5×0.038×1050.04/(384×2.060×105×121900.0)=0.024mm;

大横杆传递荷载P=p1+p2+Q=0.057+0.158+1.050=1.265kN;

集中荷载标准值最不利分配引起的最大挠度计算公式如下:

Vpmax=1264.500×1050.0×(3×1050.02-4×1050.02/9)/(72×2.060×105

×121900.0)=2.069mm;

最大挠度和V=Vqmax+Vpmax=0.024+2.069=2.093mm;

小横杆的最大挠度为2.093mm小于小横杆的最大容许挠度1050.0/150=7.000mm与10mm,满足要求!

四、扣件抗滑力的计算:

按规范表5.1.7,直角、旋转单扣件承载力取值为8.00kN,按照扣件抗滑承载力系数0.80,该工程实际的旋转单扣件承载力取值为6.40。

纵向或横向水平杆与立杆连接时,扣件的抗滑承载力按照下式计算(规范5.2.5):

R≤Rc

其中Rc--扣件抗滑承载力设计值,取6.40kN;

R--纵向或横向水平杆传给立杆的竖向作用力设计值;

大横杆的自重标准值:

P1=0.038×1.500×2/2=0.057kN;

小横杆的自重标准值:

P2=0.038×1.050/2=0.020kN;

脚手板的自重标准值:

P3=0.300×1.050×1.500/2=0.236kN;

活荷载标准值:

Q=2.000×1.050×1.500/2=1.575kN;

荷载的设计值:

R=1.2×(0.057+0.020+0.236)+1.4×1.575=2.581kN;

R<6.4kN,单扣件抗滑承载力的设计计算满足要求!

五、脚手架立杆荷载计算:

作用于脚手架的荷载包括静荷载、活荷载和风荷载。

静荷载标准值包括以下内容:

(1)每米立杆承受的结构自重标准值(kN),为0.1248

NG1=[0.1248+(1.500×2/2)×0.038/1.800]×15.0=2.347;

(2)脚手板的自重标准值(kN/m2);采用竹笆片脚手板,标准值为0.300

NG2=0.300×6×1.500×(1.050+0.30)/2=1.823kN;

(3)栏杆与挡脚手板自重标准值(kN/m);采用栏杆、竹笆片脚手板挡板,标准值为0.150

NG3=0.150×6×1.500/2=0.675kN;

(4)吊挂的安全设施荷载,包括安全网(kN/m2);0.005

NG4=0.005×1.500×15.0=0.112kN;

经计算得到,静荷载标准值

NG=NG1+NG2+NG3+NG4=4.957kN;

活荷载为施工荷载标准值产生的轴向力总和,内、外立杆按一纵距内施工荷载总和的1/2取值。

经计算得到,活荷载标准值

NQ=2.000×1.050×1.500×2/2=3.150kN;

风荷载标准值按照以下公式计算

其中Wo--基本风压(kN/m2),按照《建筑结构荷载规范》(GB50009-2001)的规定采用:

Wo=0.400kN/m2;

Uz--风荷载高度变化系数,按照《建筑结构荷载规范》(GB50009-2001)的规定采用:

Uz=0.740;

Us--风荷载体型系数:

取值为0.645;

经计算得到,风荷载标准值

Wk=0.7×0.400×0.740×0.645=0.134kN/m2;

考虑风荷载时,立杆的轴向压力设计值为

N=1.2NG+0.85×1.4NQ=1.2×4.957+0.85×1.4×3.150=9.697kN;

风荷载设计值产生的立杆段弯矩MW为

Mw=0.85×1.4WkLah2/10=0.850×1.4×0.134×1.500×

1.8002/10=0.077kN.m;

六、立杆的稳定性计算:

考虑风荷载时,立杆的稳定性计算公式

立杆的轴心压力设计值:

N=9.697kN;

计算立杆的截面回转半径:

i=1.580cm;

计算长度附加系数参照《扣件式规范》表5.3.3得:

k=1.155;

计算长度系数参照《扣件式规范》表5.3.3得:

μ=1.500;

计算长度,由公式l0=kuh确定:

l0=3.119m;

长细比:

L0/i=197.000;

轴心受压立杆的稳定系数φ,由长细比lo/i的结果查表得到:

φ=0.186

立杆净截面面积:

A=4.890cm;

立杆净截面模量(抵抗矩):

W=5.080cm;

钢管立杆抗压强度设计值:

[f]=205.000N/mm;

σ=9696.900/(0.186×489.000)+77291.671/5080.000=121.828N/mm;

立杆稳定性计算σ=121.828N/mm小于立杆的抗压强度设计值[f]=205.000N/mm,满足要求!

 

七、连墙件的计算:

连墙件的轴向力设计值应按照下式计算:

Nl=Nlw+N0

风荷载标准值Wk=0.134kN/m2;

每个连墙件的覆盖面积内脚手架外侧的迎风面积Aw=10.800m2;

按《规范》5.4.1条连墙件约束脚手架平面外变形所产生的轴向力(kN),N0=5.000kN;

风荷载产生的连墙件轴向力设计值(kN),按照下式计算:

Nlw=1.4×Wk×Aw=2.021kN;

连墙件的轴向力设计值Nl=Nlw+N0=7.021kN;

连墙件承载力设计值按下式计算:

Nf=φ·A·[f]

其中φ--轴心受压立杆的稳定系数;

由长细比l0/i=300.000/15.800的结果查表得到φ=0.949,l0为内排架距离墙的长度;

又:

A=4.890cm2;[f]=205.00N/mm2;

连墙件轴向承载力设计值为Nf=0.949×4.890×10-4×205.000×103=95.133kN;

Nl=7.021<Nf=95.133,连墙件的设计计算满足要求!

连墙件采用双扣件与墙体连接。

由以上计算得到Nl=7.021小于双扣件的抗滑力12.80kN,满足要求!

连墙件扣件连接示意图

八、联梁的计算:

按照集中荷载作用下的简支梁计算

集中荷载P传递力,P=9.697kN;

计算简图如下

支撑按照简支梁的计算公式

其中n=2.00;

经过简支梁的计算得到:

支座反力(考虑到支撑的自重)

RA=RB=(2.00-1)/2×9.697+9.697+3.000×0.174/2=14.807kN;

通过联梁传递到支座的最大力为(考虑到支撑的自重)

2.00×9.697+3.000×0.174=19.917kN;

最大弯矩(考虑到支撑的自重)

Mmax=2/8×9.6969×3+0.17436×3×3/8=7.469kN.m;

最大应力=7.469×106/80500.000=92.780N/mm2;

水平支撑梁的最大应力计算值92.780小于205.0N/mm2,满足要求!

九、悬挑梁的受力计算:

悬挑脚手架的水平钢梁按照带悬臂的连续梁计算。

悬臂部分受脚手架荷载N的作用,里端B为与楼板的锚固点,A为墙支点。

本方案中,脚手架排距为1050.0mm,内排脚手架距离墙体300.0mm,支拉斜杆的支点距离墙体为1200.0mm,

水平支撑梁的截面惯性矩I=866.20cm4,截面抵抗矩W=108.30cm3,截面积A=21.95cm2。

根据前面计算结果,受脚手架作用的联梁传递集中力(即传递到支座的最大力)N=19.917kN;

水平钢梁自重荷载q=1.2×21.95×0.0001×78.500=0.207kN/m;

悬挑脚手架示意图

悬挑脚手架计算简图

经过连续梁的计算得到

悬挑脚手架支撑梁剪力图(kN)

悬挑脚手架支撑梁变形图(mm)

悬挑脚手架支撑梁弯矩图(kN.m)

各支座对支撑梁的支撑反力由左至右分别为

R[1]=26.802KN;

R[2]=13.986KN;

R[3]=0.168KN。

最大弯矩Mmax=3.060kN.m;

最大应力σ=M/1.05W+N/A=3.060×106/(1.05×108.30×103)+

19.917×103/21.95×102=35.984N/mm2;

水平支撑梁的最大应力计算值35.984N/mm2小于水平支撑梁的抗压强度设计值215.000N/mm2,满足要求!

十、悬挑梁的整体稳定性计算:

水平钢梁采用[16a号槽钢],计算公式如下

其中φb--均匀弯曲的受弯构件整体稳定系数,按照下式计算:

经过计算得到最大应力φb=570×10.0×63.0×235/(1200.0×160.0×235.0)=1.870;

由于φb大于0.6,按照《钢结构设计规范》(GBJ17-88)附表其值用φb得到其值为0.919;

经过计算得到最大应力σ=3.060×106/(0.919×108.30×103)=30.738N/mm2;

水平钢梁的稳定性验算σ=30.738N/mm2小于[f]=215N/mm2,满足要求!

十一、拉绳的受力计算:

水平钢梁的轴力RAH和拉钢绳的轴力RUi按照下面计算

其中RUicosθi为钢绳的拉力对水平杆产生的轴压力。

各支点的支撑力RCi=RUisinθi

按照以上公式计算得到由左至右各钢绳拉力分别为:

RU1=28.866KN;

十二、拉绳的强度计算:

钢丝拉绳(支杆)的内力计算:

钢丝拉绳(斜拉杆)的轴力RU均取最大值进行计算,为

RU=28.866kN

如果上面采用钢丝绳,钢丝绳的容许拉力按照下式计算:

其中[Fg]--钢丝绳的容许拉力(kN);

Fg--钢丝绳的钢丝破断拉力总和(kN),

计算中可以近似计算Fg=0.5d2,d为钢丝绳直径(mm);

α--钢丝绳之间的荷载不均匀系数,对6×19、6×37、6×61钢丝绳分别取0.85、0.82和0.8;

K--钢丝绳使用安全系数。

计算中[Fg]取RU}kN,α=0.820,K=6,得到:

经计算,钢丝绳最小直径必须大于21mm才能满足要求!

钢丝拉绳(斜拉杆)的拉环强度计算

钢丝拉绳(斜拉杆)的轴力RU的最大值进行计算作为拉环的拉力N,为

N=RU=28.866kN

钢丝拉绳(斜拉杆)的拉环的强度计算公式为

其中[f]为拉环受力的单肢抗剪强度,取[f]=125N/mm2;

所需要的钢丝拉绳(斜拉杆)的拉环最小直径D=(28.866×103×4/3.142×125.000)1/2=18mm;

十三、锚固段与楼板连接的计算:

1.水平钢梁与楼板压点如果采用钢筋拉环,拉环强度计算如下:

水平钢梁与楼板压点的拉环受力R=0.168kN;

水平钢梁与楼板压点的拉环强度计算公式为:

其中[f]为拉环钢筋抗拉强度,按照《混凝土结构设计规范》10.9.8条[f]=50N/mm2;

所需要的水平钢梁与楼板压点的拉环最小直径D=[167.979×4/(3.142×50×2)]1/2=1.462mm;

水平钢梁与楼板压点的拉环一定要压在楼板下层钢筋下面,并要保证两侧30cm以上搭接长度。

2.水平钢梁与楼板压点如果采用螺栓,螺栓粘结力锚固强度计算如下:

锚固深度计算公式:

其中N--锚固力,即作用于楼板螺栓的轴向拉力,N=0.168kN;

d--楼板螺栓的直径,d=20.00mm;

[fb]--楼板螺栓与混凝土的容许粘接强度,计算中取1.57N/mm2;

[f]--钢材强度设计值,取205N/mm2;

h--楼板螺栓在混凝土楼板内的锚固深度,经过计算得到h要大于

167.979/(3.142×20.00×1.57)=1.703mm。

螺栓所能承受的最大拉力F=1/4×3.14×20.002×205×10-3=64.403kN

螺栓的轴向拉力N=0.168kN小于螺栓所能承受的最大拉力F=64.403kN,满足要求!

3.水平钢梁与楼板压点如果采用螺栓,混凝土局部承压计算如下:

混凝土局部承压的螺栓拉力要满足公式:

其中N--锚固力,即作用于楼板螺栓的轴向压力,N=13.986kN;

d--楼板螺栓的直径,d=20.00mm;

b--楼板内的螺栓锚板边长,b=5×d=100.000mm;

fcc--混凝土的局部挤压强度设计值,计算中取0.950fc=15.865N/mm2;

经过计算得到公式右边等于153665.863kN,大于锚固力N=13.986kN,楼板混凝土局部承压计算满足要求!

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 面试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1