GPS测量原理.docx

上传人:b****2 文档编号:2455075 上传时间:2022-10-29 格式:DOCX 页数:9 大小:23.72KB
下载 相关 举报
GPS测量原理.docx_第1页
第1页 / 共9页
GPS测量原理.docx_第2页
第2页 / 共9页
GPS测量原理.docx_第3页
第3页 / 共9页
GPS测量原理.docx_第4页
第4页 / 共9页
GPS测量原理.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

GPS测量原理.docx

《GPS测量原理.docx》由会员分享,可在线阅读,更多相关《GPS测量原理.docx(9页珍藏版)》请在冰豆网上搜索。

GPS测量原理.docx

GPS测量原理

GPS测量原理2007-04-2720:

37

GPS定位是利用三点定位原理,即知道未知点距离已知点的距离,未知点必然位于以已知点为球心的,距离为半径的球上,测出未知点和三个已知点的距离,则未知点在三个球圆周的相交处(为两个点时,因有接收方向,故有一个处于接收背面的点可以舍去),从而准确的测出未知点的位置。

  GPS接收机收到来自卫星无线电波的信号,根据电波到达所需要的时间,测出距卫星的距离(s=t×c距离,t为电波到达的时间,c是电磁波的速度约为3000000米/秒)。

测量与时间有着极大的关系,先介绍一下时间有关的术语。

  原子时:

1967年10月的第13次国际度量衡总会中,规定铯原子钟作为决定国际性时间的基本标准器。

简单的说,是规定铯原子的振动频率为9.192631770GHz,以此种频率为基准,来表示刻划的时刻叫做原子时。

由于铯原子振动频率稳定度极高(如前述能达到10-12至10-14量级),能达到三万年相差不超过一秒的时间精度。

  星历:

精确描述天体(如GPS卫星)位置的以时间为变量的函数的一组参数。

目前,GPS星历有“广播星历”和后处理的“精密星历”。

测量精度很大程度上取决于时间精度,这也是卫星上搭载了原子钟的原因,为了准确地得到电磁波到达的时间,需要GPS接收机也要有同样高精度的时间,为了把接收机制造成小型和价廉起见,不可能使用昂贵的原子钟。

解决方法是,追加另一颗卫星的信息,来寻求正确的时间,这样一来,为了进行正确的测位,必须接收来自四颗卫星的电磁波,目前,多数导航是通过这种方法实现的。

  五、GPS的信号

  GPS卫星发射两种频率的载波信号,即频率为1575.42MHz的L1载波和频率为1227.60HMz的L2载波,它们的频率分别是基本频率10.23MHz的154倍和120倍,它们的波长分别为19.03cm和24.42cm。

在L1和L2上又分别调制着多种信号,这些信号主要有:

C/A代码:

C/A代码又被称为粗捕获码,它被调制在L1载波上,是1MHz的伪随机噪声码(PRN码),其码长为1023位(周期为1ms)。

由于每颗卫星的C/A代码都不一样,因此,我们经常用它们的PRN号来区分它们。

C/A代码是普通用户用以测定测站到卫星间的距离的一种主要的信号。

  P代码:

P代码又被称为精码,它被调制在L1和L2载波上,是10MHz的伪随机噪声码,其周期为七天。

在实施AS时,P代码与W代码进行模二相加生成保密的Y代码,此时,一般用户无法利用P代码来进行导航定位。

  Y代码:

见P代码。

  导航信息:

导航信息被调制在L1载波上,其信号频率为50Hz,包含有GPS卫星的轨道参数、卫星钟改正数和其它一些系统参数。

用户一般需要利用此导航信息来计算某一时刻GPS卫星在地球轨道上的位置,导航信息也被称为广播星历。

  六、GPS定位方法

  GPS定位的方法是多种多样的,用户可以根据不同的用途采用不同的定位方法。

GPS定位方法可依据不同的分类标准,作如下划分:

  l根据定位所采用的观测值

  伪距定位:

伪距定位所采用的观测值为GPS伪距观测值,所采用的伪距观测值既可以是C/A代码伪距,也可以是P代码伪距。

伪距定位的优点是数据处理简单,对定位条件的要求低,不存在整周模糊度的问题,可以非常容易地实现立即寻址;其缺点是观测值精度低,C/A代码伪距观测值的精度一般为30米,而P代码伪距观测值的精度一般也在3米左右,从而导致定位成果精度低,另外,若采用精度较高的P代码伪距观测值,还存在AS的问题。

  载波相位定位:

载波相位定位所采用的观测值为GPS的载波相位观测值,即L1、L2或它们的某种线性组合。

载波相位定位的优点是观测值的精度高,一般优于2个毫米;其缺点是数据处理过程复杂,存在整周模糊度的问题。

  l根据定位的模式

  绝对寻址:

绝对寻址又称为单点定位,这是一种采用一台接收机进行定位的模式,它所确定的是接收机天线的绝对坐标。

这种定位模式的特点是作业方式简单,可以单机作业。

绝对寻址一般用于导航和精度要求不高的应用中。

  相对定位:

相对定位又称为差分定位,这种定位模式采用两台以上的接收机,同时对一组相同的卫星进行观测,以确定接收机天线间的相互位置关系。

  l根据获取定位结果的时间

  立即寻址:

立即寻址是根据接收机观测到的资料,实时地解算出接收机天线所在的位置。

  非立即寻址:

非立即寻址又称后处理定位,它是通过对接收机接收到的资料进行后处理以进行定位得方法。

  l根据定位时接收机的运动状态

  动态定位:

所谓动态定位,就是在进行GPS定位时,认为接收机的天线在整个观测过程中的位置是变化的。

也就是说,在数据处理时,将接收机天线的位置作为一个随时间的改变而改变的量。

动态定位又分为Kinematic和Dynamic两类。

  静态定位:

所谓静态定位,就是在进行GPS定位时,认为接收机的天线在整个观测过程中的位置是保持不变的。

也就是说,在数据处理时,将接收机天线的位置作为一个不随时间的改变而改变的量。

在测量中,静态定位一般用于高精度的测量定位,其具体观测模式多台接收机在不同的测站上进行静止同步观测,时间由几分钟、几小时甚至数十小时不等。

  七、GPS应用

  GPS最初为美国军方所专用,由其控制和操作。

海湾战争后,开放了C/A代码,并且降低了它的精度。

尽管如此,GPS全天候向全球瞬时提供高精度定位及时间信息,引起了全世界的强烈兴趣。

各国科技工作者研究出种种方法,如相位法、差分测量法等等,大大提高了测量结果的精度,满足了各国广泛应用的要求,同时也推动了GPS导航定位技术的迅速发展,下面是GPS在一些典型应用:

n高空科学气球GPS跟踪定位系统

n移动车辆GPS自动定位技术

n3GPS精密计时

n利用GPS技术确定地球卫星轨道

n舰船、飞机的导航定位

n导弹的精确制导

目前,全球定位系统已广泛应用于军事和民用等众多领域中。

下面以它在交通运输系统中的运用为例,简要说明一下:

  1、GPS在道路工程中的应用

  GPS在道路工程中的应用,目前主要是用于建立各种道路工程控制网及测定航测外控点等。

随着高等级公路的迅速发展,对勘测技术提出了更高的要求,由于线路长,已知点少,因此,用常规测量手段不仅布网困难,而且难以满足高精度的要求。

目前,国内已逐步采用GPS技术建立线路首级高精度控制网,如沪宁、沪杭高速公路的上海段就是利用GPS建立了首级控制网,然后用常规方法布设导线加密。

实践证明,在几十公里范围内的点位误差只有2cm左右,达到了常规方法难以实现的精度,同时也大大提前了工期。

  2、GPS在汽车导航和交通管理中的运用

  三维导航是GPS的首要功能,飞机、船舶、地面车辆以及步行者都可利用GPS导航接收器进行导航。

汽车导航系统是在全球定位系统GPS基础上发展起来的一门新型技术。

汽车导航系统由GPS导航、自律导航、微处理器、车速传感器、陀螺传感器、CD—ROM驱动器、LCD显示器组成。

  GPS导航是由GPS接收机接收GPS卫星信号(三颗以上),求出该点的经纬度坐标、速度、时间等信息。

为提高汽车导航定位精度,通常采用差分GPS技术。

当汽车行驶到地下隧道、高层楼群、高速公路等遮掩物而与捕获不到GPS卫星信号时,系统可自动导入自律导航系统,此时由车速传感器检测出汽车的行进速度,通过微处理单元的数据处理,从速度和时间中直接算出前进的距离,陀螺传感器直接检测出前进的方向,陀螺仪还能自动存储各种资料,即使在更换轮胎暂时停车时,系统也可以重新设定。

  由GPS卫星导航和自律导航所测到的汽车位置坐标资料、前进的方向都与实际行驶的路线轨迹存在一定误差,为修正这两者的误差,与地图上的路线统一,需采用地图匹配技术,加一个地图匹配电路,对汽车行驶的路线与电子地图上道路误差进行实时相关匹配作自动修正,此时地图匹配电路是通过微处理单元的整理程序进行快速处理,得到汽车在电子地图上的正确位置,以指示出正确行驶路线。

CD-ROM用于存储道路资料等信息,LCD显示器用于显示导航的相关信息。

GPS导航系统与电子地图、无线电通信网络及计算机车辆管理信息系统相结合,可以实现车辆跟踪和交通管理等许多功能,这些功能包括:

l车辆跟踪

l提供出行路线规划和导航

l信息查询

l话务指挥

l紧急援助

  GPS除了用于导航、定位、测量外,由于GPS系统的空间卫星上载有的精确时钟可以发布时间和频率信息,因此,以空间卫星上的精确时钟为基础,在地面监测站的监控下,传送精确时间和频率是GPS的另一重要应用。

全球定位系统GPS是近年来开发的最具有开创意义的高新技术之一,其全球性、全能性、全天候性的导航定位、定时、测速优势必然会在诸多领域中得到越来越广泛的应用。

  八、导航的概念

  导航是一个技术门类的总称,它是引导飞机、船舶、车辆以及个人(总称作运载体)安全、准确地沿着选定的路线,准时到达目的地的一种手段。

导航的基本功能是回答:

我现在在哪里?

我要去哪里?

如何去?

  九、导航系统概念

  导航应由导航系统完成,包括装在运载体上的导航设备以及装在其它地方与导航设备配合使用的导航台。

从导航台的位置来看,主要有:

陆基导航系统:

即导航台位于陆地上,导航台与导航设备之间用无线电波联系。

星基导航系统:

导航台设在人造卫星上,扩大覆盖范围。

GPS导航系统属于星基导航系统。

  十、主要导航系统简介

  在卫星定位系统出现之前,远程导航与定位主要用无线导航系统。

1、无线电导航系统

Ø罗兰--C:

工作在100KHZ,由三个地面导航台组成,导航工作区域2000KM,一般精度200-300M。

ØOmega(奥米茄):

工作在十几千赫。

由八个地面导航台组成,可覆盖全球。

精度几英里。

Ø多卜勒系统:

利用多卜勒频移原理,通过测量其频移得到运动物参数(地速和偏流角),推算出飞行器位置,属自备式航位推算系统。

误差随航程增加而累加。

  缺点:

覆盖的工作区域小;电波传播受大气影响;定位精度不高。

2、卫星定位系统

Ø最早的卫星定位系统是美国的子午仪系统(Transit),1958年研制,64年正式投入使用。

由于该系统卫星数目较小(5-6颗),运行高度较低(平均1000KM),从地面站观测到卫星的时间隔较长(平均1.5h),因而它无法提供连续的实时三维导航,而且精度较低。

Ø全球导航卫星系统GLONASS:

GLONASS是GLObalNAvigationSatelliteSystem(全球导航卫星系统)的字头缩写,是前苏联从80年代初开始建设的与美国GPS系统相类似的卫星定位系统,也由卫星星座、地面监测控制站和用户设备三部分组成。

现在由俄罗斯空间局管理。

GLONASS系统从理论上有24颗卫星,但由于卫星使用寿命和资金紧张等问题,实际上的可用卫星远远少于24,目前有8颗供使用的卫星。

GLONASS系统的卫星星座由24颗卫星组成,均匀分布在3个近圆形的轨道平面上,每个轨道面8颗卫星,轨道高度19100公里,运行周期11小时15分,轨道倾角64.8°。

与美国的GPS系统不同的是GLONASS系统采用频分多址(FDMA)方式,根据载波频率来区分不同卫星(GPS是码分多址(CDMA),根据调制码来区分卫星)。

每颗GLONASS卫星发播的两种载波的频率分别为L1=1,602+0.5625k(MHz)和L2=1,246+0.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 畜牧兽医

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1