51直流调速.docx

上传人:b****1 文档编号:2440809 上传时间:2022-10-29 格式:DOCX 页数:21 大小:187.19KB
下载 相关 举报
51直流调速.docx_第1页
第1页 / 共21页
51直流调速.docx_第2页
第2页 / 共21页
51直流调速.docx_第3页
第3页 / 共21页
51直流调速.docx_第4页
第4页 / 共21页
51直流调速.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

51直流调速.docx

《51直流调速.docx》由会员分享,可在线阅读,更多相关《51直流调速.docx(21页珍藏版)》请在冰豆网上搜索。

51直流调速.docx

51直流调速

目录

第一章前言1

1.1设计背景及意义1

1.2设计说明1

1.3设计任务及功能2

第二章总体设计方案2

第三章系统硬件电路设计3

3.18051单片机介绍3

3.1.180C51单片机硬件结构3

3.1.2最小应用系统设计4

3.1.38051引脚说明:

6

3.2直流电动机调速概述8

3.2.1直流电机调速原理8

3.2.2直流调速系统实现方式9

3.3H桥驱动电路设计方案11

3.4基于霍尔传感器的测速模块12

3.5续流电路设计13

四系统软件设计14

4.1PWM波软件设计14

4.2测速软件设计15

五设计总结16

参考文献17

附录1:

程序18

附录2:

硬件电路图25

第一章前言

1.1设计背景及意义

近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。

采取传统的调速系统主要有以下的缺陷:

模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。

而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。

并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。

1.2设计说明

本设计是对直流电机PWM调速器设计的研究,主要实现对电机的控制。

为实现系统的微机控制,在设计中,采用了8051单片机作为整个控制系统的控制电路的核心部分,配以各种显示、驱动模块,实现对电动机转速参数的显示和测量;由命令输入模块、光电隔离模块及H型驱动模块组成。

采用带中断的独立式键盘作为命令的输入,单片机在程序控制下,不断给光电隔离电路发送PWM波形,H型驱动电路完成电机正反转控制.在设计中,采用PWM调速方式,通过改变PWM的占空比从而改变电动机的电枢电压,进而实现对电动机的调速。

设计的整个控制系统,在硬件结构上采用了大量的集成电路模块,大大简化了硬件电路,提高了系统的稳定性和可靠性,使整个系统的性能得到提高。

1.3设计任务及功能

任务:

单片机为控制核心的直流电机PWM调速控制系统

功能主要包括:

直流电机的正转;

直流电机的反转;

直流电机的加速;

直流电机的减速;

直流电机的启动;

直流电机的停止;

直流电机的转速在数码管上显示。

第二章总体设计方案

总体设计方案的硬件部分如图所示:

 

图2.1总体设计框图

键盘向单片机输入相应控制指令,由单片机通过P1.0与P1.1其中一口输出与转速相应的PWM脉冲,另一口输出低电平,经过信号放大、光耦传递,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。

电动机的运转状态通过数码管显示出来。

电动机所处速度级以速度档级数显示。

正转时最高位显示“三”,其它三位为电机转速;反转时最高位显示“F”,其它三位为电机转速。

每次电动机启动后开始显示,停止时数码管显示出“0000”。

第三章系统硬件电路设计

3.18051单片机介绍

一个单片机应用系统的硬件电路设计包含有两部分内容:

一是系统扩展,即单片机内部的功能单元,如ROM﹑RAM﹑I/O口﹑定时/记数器﹑中断系统等能量不能满足应用系统的要求时,必须在片外进行扩展,选择适当的芯片,设计相应的电路。

二是系统配置,既按照系统功能要求配置外围设备,如键盘显示器﹑打印机﹑A/D﹑D/A转换器等,要设计合适的接口电路。

3.1.180C51单片机硬件结构

80C51单片机是把那些作为控制应用所必需的基本内容都集成在一个尺寸有限的集成电路芯片上。

如果按功能划分,它由如下功能部件组成,即微处理器、数据存储器、程序存储器、并行I/O口、串行口、定时器/计数器、中断系统及特殊功能寄存器。

它们都是通过片内单一总线连接而成,其基本结构依旧是CPU加上外围芯片的传统结构模式。

但对各种功能部件的控制是采用特殊功能寄存器的集中控制方式。

(1)微处理器

该单片机中有一个8位的微处理器,与通用的微处理器基本相同,同样包括了运算器和控制器两大部分,只是增加了面向控制的处理功能,不仅可处理数据,还可以进行位变量的处理。

(2)数据存储器

片内为128个字节,片外最多可外扩至64k字节,用来存储程序在运行期间的工作变量、运算的中间结果、数据暂存和缓冲、标志位等,所以称为数据存储器。

(3)程序存储器

由于受集成度限制,片内只读存储器一般容量较小,如果片内的只读存储器的容量不够,则需用扩展片外的只读存储器,片外最多可外扩至64k字节。

(4)中断系统

具有5个中断源,2级中断优先权。

(5)定时器/计数器

片内有2个16位的定时器/计数器,具有四种工作方式。

(6)串行口

1个全双工的串行口,具有四种工作方式。

可用来进行串行通讯,扩展并行I/O口,甚至与多个单片机相连构成多机系统,从而使单片机的功能更强且应用更广。

(7)P1口、P2口、P3口、P4口

为4个并行8位I/O口。

(8)特殊功能寄存器

共有21个,用于对片内的个功能的部件进行管理、控制、监视。

实际上是一些控制寄存器和状态寄存器,是一个具有特殊功能的RAM区。

3.1.2最小应用系统设计

80C51是片内有ROM/EPROM的单片机,因此,这种芯片构成的最小系统简单﹑可靠。

用80C51单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即可,图3.180C51单片机最小系统所示:

图3.180C51单片机最小系统

(1)时钟电路

80C51虽然有内部振荡电路,但要形成时钟,必须外部附加电路。

80C51单片机的时钟产生方法有两种。

内部时钟方式和外部时钟方式。

本设计采用内部时钟方式,利用芯片内部的振荡电路,在XTAL1、XTAL2引脚上外接定时元件,内部的振荡电路便产生自激振荡。

本设计采用最常用的内部时钟方式,即用外接晶体和电容组成的并联谐振回路。

振荡晶体可在1.2MHZ到12MHZ之间选择。

电容值无严格要求,但电容取值对振荡频率输出的稳定性、大小、振荡电路起振速度有少许影响,CX1、CX2可在20pF到100pF之间取值,但在60pF到70pF时振荡器有较高的频率稳定性。

所以本设计中,振荡晶体选择6MHZ,电容选择65pF。

在设计印刷电路板时,晶体和电容应尽可能靠近单片机芯片安装,以减少寄生电容,更好的保证振荡器稳定和可靠地工作。

为了提高温度稳定性,应采用NPO电容。

(2)复位电路

图3.280C51复位电路

80C51的复位是由外部的复位电路来实现的。

复位引脚RST通过一个斯密特触发器用来抑制噪声,在每个机器周期的S5P2,斯密特触发器的输出电平由复位电路采样一次,然后才能得到内部复位操作所需要的信号。

复位电路通常采用上电自动复位和按钮复位两种方式。

最简单的上电自动复位电路中上电自动复位是通过外部复位电路的电容充电来实现的。

只要Vcc的上升时间不超过1ms,就可以实现自动上电复位。

时钟频率用6MHZ时C取22uF,R取1KΩ。

除了上电复位外,有时还需要按键手动复位。

本设计就是用的按键手动复位。

按键手动复位有电平方式和脉冲方式两种。

其中电平复位是通过RST端经电阻与电源Vcc接通而实现的。

按键手动复位电路见图3.2。

3.1.38051引脚说明:

VCC:

供电电压。

GND:

接地。

P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下所示:

P3.0RXD(串行输入口)

P3.1TXD(串行输出口)

P3.2/INT0(外部中断0)

P3.3/INT1(外部中断1)

P3.4T0(记时器0外部输入)

P3.5T1(记时器1外部输入)

P3.6/WR(外部数据存储器写选通)

P3.7/RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

3.2直流电动机调速概述

3.2.1直流电机调速原理

直流电动机根据励磁方式不同,直流电动机分为自励和他励两种类型。

不同励磁方式的直流电动机机械特性曲线有所不同。

但是对于直流电动机的转速有以下公式:

其中:

U—电压;—励磁绕组本身的电阻;—每极磁通(Wb);Cc—电势常数;Cr—转矩常量。

由上式可知,直流电机的速度控制既可采用电枢控制法,也可采用磁场控制法。

磁场控制法控制磁通,其控制功率虽然较小,但低速时受到磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差。

所以在工业生产过程中常用的方法是电枢控制法。

图3.3直流电机的工作原理图

电枢控制是在

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 自我管理与提升

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1