信息安全概论中的DES加密解密算法的用C++实现附上实验报告.docx

上传人:b****2 文档编号:2439689 上传时间:2022-10-29 格式:DOCX 页数:13 大小:56.52KB
下载 相关 举报
信息安全概论中的DES加密解密算法的用C++实现附上实验报告.docx_第1页
第1页 / 共13页
信息安全概论中的DES加密解密算法的用C++实现附上实验报告.docx_第2页
第2页 / 共13页
信息安全概论中的DES加密解密算法的用C++实现附上实验报告.docx_第3页
第3页 / 共13页
信息安全概论中的DES加密解密算法的用C++实现附上实验报告.docx_第4页
第4页 / 共13页
信息安全概论中的DES加密解密算法的用C++实现附上实验报告.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

信息安全概论中的DES加密解密算法的用C++实现附上实验报告.docx

《信息安全概论中的DES加密解密算法的用C++实现附上实验报告.docx》由会员分享,可在线阅读,更多相关《信息安全概论中的DES加密解密算法的用C++实现附上实验报告.docx(13页珍藏版)》请在冰豆网上搜索。

信息安全概论中的DES加密解密算法的用C++实现附上实验报告.docx

信息安全概论中的DES加密解密算法的用C++实现附上实验报告

 

网络与信息安全

IntroductiontoNetworkandSecurity

——DES加密解密算法的C++实现

 

姓名:

学号:

学院:

 

2010年10月

一、DES算法的实现

1.DES简介

本世纪五十年代以来,密码学研究领域出现了最具代表性的两大成就。

其中之一就是1971年美国学者塔奇曼(Tuchman)和麦耶(Meyer)根据信息论创始人香农(Shannon)提出的“多重加密有效性理论”创立的,后于1977年由美国国家标准局颁布的数据加密标准。

DES密码实际上是Lucifer密码的进一步发展。

它是一种采用传统加密方法的区组密码。

它的算法是对称的,既可用于加密又可用于解密。

美国国家标准局1973年开始研究除国防部外的其它部门的计算机系统的数据加密标准,于1973年5月15日和1974年8月27日先后两次向公众发出了征求加密算法的公告。

加密算法要达到的目的通常称为DES密码算法要求主要为以下四点:

提供高质量的数据保护,防止数据XX的泄露和未被察觉的修改;具有相当高的复杂性,使得破译的开销超过可能获得的利益,同时又要便于理解和掌握DES密码体制的安全性应该不依赖于算法的保密,其安全性仅以加密密钥的保密为基础实现经济,运行有效,并且适用于多种完全不同的应用。

1977年1月,美国政府颁布:

采纳IBM公司设计的方案作为非机密数据的正式数据加密标准(DES枣DataEncryptionStandard)。

目前在这里,随着三金工程尤其是金卡工程的启动,DES算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键数据的保密,如信用卡持卡人的PIN的加密传输,IC卡与POS间的双向认证、金融交易数据包的MAC校验等,均用到DES算法。

DES算法的入口参数有三个:

Key、Data、Mode。

其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:

加密或解密。

DES算法是这样工作的:

如Mode为加密,则用Key去把数据Data进行加密,生成Data的密码形式(64位)作为DES的输出结果;如Mode为解密,则用Key去把密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。

在通信网络的两端,双方约定一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密码形式在公共通信网(如电话网)中传输到通信网络的终点,数据到达目的地后,用同样的Key对密码数据进行解密,便再现了明码形式的核心数据。

这样,便保证了核心数据(如PIN、MAC等)在公共通信网中传输的安全性和可靠性。

通过定期在通信网络的源端和目的端同时改用新的Key,便能更进一步提高数据的保密性,这正是现在金融交易网络的流行做法。

2.DES算法详述

DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表:

58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,

62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,

57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3,

61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,

即将输入的第58位换到第一位,第50位换到第2位,……,依此类推,最后一位是原来的第7位。

L0、R0则是换位输出后的两部分,L0是输出的左32位,R0是右32位,例:

设置换前的输入值为D1D2D3……D64,则经过初始置换后的结果为:

L0=D550……D8;R0=D57D49...D7。

经过26次迭代运算后,得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。

逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:

40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,

38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,

36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,

34,2,42,10,50,18,5826,33,1,41,9,49,17,57,25,

放大换位表

32,1,2,3,4,5,4,5,6,7,8,9,8,9,10,11,

12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,

22,23,24,25,24,25,26,27,28,29,28,29,30,31,32,1,

单纯换位表

16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,

2,8,24,14,32,27,3,9,19,13,30,6,22,11,4,25,

在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把6bit数据变为4bit数据。

下面给出选择函数Si(i=1,2......8)的功能表:

选择函数Si

S1:

14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,

0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,

4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,

15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,

S2:

15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,

3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,

0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,

13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,

S3:

10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,

13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,

13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,

1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,

S4:

7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,

13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,

10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,

3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,

S5:

2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,

14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,

4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,

11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,

S6:

12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,

10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,

9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,

4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,

S7:

4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,

13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,

1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,

6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,

S8:

13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,

1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,

7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,

2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,

3.子密钥Ki(48bit)的生成算法

初始Key值为64位,但DES算法规定,其中第8、16、......64位是奇偶校验位,不参与DES运算。

故Key实际可用位数便只有56位。

即:

经过缩小选择换位表1的变换后,Key的位数由64位变成了56位,此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0(48位)。

依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环左移对应的左移位数要依据下述规则进行:

循环左移位数1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1

以上介绍了DES算法的加密过程。

DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14、……,最后一次用K0,算法本身并没有任何变化。

二、加/解密执行过程及结果

1.运行程序

2.加密过程(同时生成密文文档)

3.解密过程(同时生成明文外部文档)

三、源代码

#include"stdafx.h"

#include"DESTest.h"

#include"DESTestDlg.h"

#include"Encrypt.h"

voidCDES:

:

deskey(unsignedcharkey[8],Modemd)

{

registerintii,j,l,m,n;

unsignedcharpc1m[56],pcr[56];

unsignedlongkn[32];

for(j=0;j<56;j++)

{

l=pc1[j];

m=l&07;

pc1m[j]=(key[l>>3]&bytebit[m])?

1:

0;

}

for(ii=0;ii<16;ii++)

{

if(md==DECRYPT)

m=(15-ii)<<1;

else

m=ii<<1;

n=m+1;

kn[m]=kn[n]=0L;

for(j=0;j<28;j++)

{

l=j+totrot[ii];

if(l<28)

pcr[j]=pc1m[l];

else

pcr[j]=pc1m[l-28];

}

for(j=28;j<56;j++)

{

l=j+totrot[ii];

if(l<56)

pcr[j]=pc1m[l];

el

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1