人教版高中物理选修32精品讲义第5章交变电流 1.docx
《人教版高中物理选修32精品讲义第5章交变电流 1.docx》由会员分享,可在线阅读,更多相关《人教版高中物理选修32精品讲义第5章交变电流 1.docx(19页珍藏版)》请在冰豆网上搜索。
人教版高中物理选修32精品讲义第5章交变电流1
1 交变电流
[学习目标]1.会观察电流(或电压)的波形图,理解交变电流和直流的概念.2.理解交变电流的产生过程,会分析电动势和电流方向的变化规律.3.知道交变电流的变化规律及表示方法,知道交变电流的瞬时值、峰值的物理含义.
一、对交变电流的认识
[导学探究]
(1)把图1所示电路接在干电池的两端时,可以观察到什么现象?
(2)把图1中电路接在手摇式发电机两端时,又会观察到怎样的现象?
并解释看到的现象.
图1
答案
(1)当接在干电池两端时,只有一个发光二极管会亮.
(2)当接在手摇式发电机两端时,两个发光二极管间或的闪亮,原因是发电机产生与直流不同的电流,两个发光二极管一会儿接通这一个,一会儿再接通另外一个,电流方向不停地改变.
[知识梳理] 对交变电流的认识:
(1)交变电流:
大小和方向随时间做周期性变化的电流叫交变电流,简称交流.
(2)直流:
方向不随时间变化的电流称为直流.
注意:
对直流电流和交变电流的区分主要是看电流方向是否变化.
(3)正弦式交变电流:
按正弦规律变化的交变电流叫正弦式交变电流,简称正弦式电流.
[即学即用] 判断下列说法的正误.
(1)交变电流的大小一定随时间变化.( )
(2)大小和方向都不随时间变化的电流才是直流电.( )
(3)交变电流的大小可以不变,但方向一定随时间周期性变化.( )
(4)交变电流不稳定,很容易“烧坏”家电.( )
答案
(1)×
(2)× (3)√ (4)×
二、交变电流的产生
[导学探究] 假定线圈绕OO′轴沿逆时针方向匀速转动,如图2甲至丁所示.请分析判断:
图2
(1)线圈转动一周的过程中,线圈中的电流方向的变化情况.
(2)线圈转动过程中,当产生的感应电流有最大值和最小值时线圈分别在什么位置?
答案
(1)
转动过程
电流方向
甲→乙
B→A→D→C
乙→丙
B→A→D→C
丙→丁
A→B→C→D
丁→甲
A→B→C→D
(2)线圈转到乙或丁位置时线圈中的电流最大.线圈转到甲或丙位置时线圈中电流最小,为零,此时线圈所处的平面称为中性面.
[知识梳理] 正弦式交变电流的产生条件及中性面的特点:
(1)正弦式交变电流的产生条件:
将闭合矩形线圈置于匀强磁场中,并绕垂直磁场方向的轴匀速转动.
(2)中性面:
线圈平面与磁感线垂直时的位置.
①线圈处于中性面位置时,穿过线圈的Φ最大,但线圈中的电流为零.
②线圈每次经过中性面时,线圈中感应电流的方向都要改变.线圈转动一周,感应电流的方向改变两次.
[即学即用] 判断下列说法的正误.
(1)只要线圈在磁场中转动,就可以产生交变电流.( )
(2)线圈在通过中性面时磁通量最大,电流也最大.( )
(3)线圈在通过垂直中性面的平面时电流最大,但磁通量为零.( )
(4)线圈在通过中性面时电流的方向发生改变.( )
答案
(1)×
(2)× (3)√ (4)√
三、交变电流的变化规律
[导学探究] 如图3所示,线圈平面从中性面开始转动,角速度为ω.经过时间t,线圈转过的角度是ωt,ab边的线速度v的方向跟磁感线方向间的夹角也等于ωt.设ab边长为L1,bc边长为L2,线圈面积S=L1L2,磁感应强度为B,则:
图3
(1)ab边产生的感应电动势为多大?
(2)整个线圈中的感应电动势为多大?
(3)若线圈有N匝,则整个线圈的感应电动势为多大?
答案
(1)eab=BL1vsinωt=BL1sinωt
=BL1L2ωsinωt=BSωsinωt.
(2)整个线圈中的感应电动势由ab和cd两部分组成,且eab=ecd,所以e1=eab+ecd=BSωsinωt.
(3)若线圈有N匝,则相当于N个完全相同的电源串联,所以e=NBSωsinωt.
[知识梳理] 交变电流的瞬时值及峰值:
(1)正弦式交变电流电动势的瞬时值表达式:
①当从中性面开始计时:
e=Emsinωt.
②当从与中性面垂直的位置开始计时:
e=Emcosωt.
(2)正弦式交变电流电动势的峰值表达式:
Em=nBSω.
与线圈的形状无关,与转动轴的位置无关.(填“有关”或“无关”)
[即学即用] 有一个正方形线圈的匝数为10匝,边长为20cm,线圈总电阻为1Ω,线圈绕OO′轴以10πrad/s的角速度匀速转动,如图4所示,匀强磁场的磁感应强度为0.5T,该线圈产生的交变电流电动势的峰值为,电流的峰值为,若从中性面位置开始计时,感应电动势的瞬时值表达式为.
图4
答案 6.28V 6.28A e=6.28sin10πtV
解析 电动势的峰值为Em=nBSω=10×0.5×0.22×10πV=6.28V
电流的峰值为Im==6.28A
瞬时值表达式为e=Emsinωt=6.28sin10πtV.
一、交变电流的产生
例1
(多选)矩形线框绕垂直于匀强磁场且在线框平面内的轴匀速转动时产生了交变电流,下列说法正确的是( )
A.当线框位于中性面时,线框中感应电动势最大
B.当穿过线框的磁通量为零时,线框中的感应电动势也为零
C.每当线框经过中性面时,感应电动势或感应电流的方向就改变一次
D.线框经过中性面时,各边切割磁感线的速度为零
答案 CD
解析 线框位于中性面时,线框平面与磁感线垂直,穿过线框的磁通量最大,但此时切割磁感线的两边的速度与磁感线平行,即不切割磁感线,所以感应电动势等于零,此时穿过线框的磁通量的变化率也等于零,感应电动势或感应电流的方向也就在此时刻发生变化.线框垂直于中性面时,穿过线框的磁通量为零,但切割磁感线的两边都垂直切割,有效切割速度最大,所以感应电动势最大,也可以说此时穿过线框的磁通量的变化率最大,故C、D选项正确.
搞清两个特殊位置的特点:
(1)线圈平面与磁场垂直时:
e为0,i为0,Φ为最大,为0.
(2)线圈平面与磁场平行时:
e为最大,i为最大,Φ为0,为最大.
二、交变电流的变化规律
1.峰值表达式
Em=NBSω,Im==,Um=ImR=
2.正弦交变电流的瞬时值表达式
(1)从中性面位置开始计时
e=Emsinωt,i=Imsinωt,U=Umsinωt
(2)从与中性面垂直的位置开始计时
e=Emcosωt,i=Imcosωt,U=Umcosωt.
例2
一矩形线圈,面积是0.05m2,共100匝,线圈电阻r=2Ω,外接电阻R=8Ω,线圈在磁感应强度B=T的匀强磁场中以n=300r/min的转速绕垂直于磁感线的轴匀速转动,如图5所示,若从中性面开始计时,求:
图5
(1)线圈中感应电动势的瞬时值表达式;
(2)线圈从开始计时经s时线圈中由此得到的感应电流的瞬时值;
(3)外电路R两端电压瞬时值的表达式.
答案
(1)e=50sin10πtV
(2)A
(3)u=40sin10πtV
解析
(1)线圈转速n=300r/min=5r/s,
角速度ω=2πn=10πrad/s,
线圈产生的感应电动势最大值Em=NBSω=50V,
由此得到的感应电动势瞬时值表达式为
e=Emsinωt=50sin10πtV.
(2)将t=s代入感应电动势瞬时值表达式中,
得e′=50sin(10π×)V=25V,
对应的感应电流i′==A.
(3)由欧姆定律得u=R=40sin10πtV.
1.求交变电流瞬时值的方法
(1)确定线圈转动从哪个位置开始计时;
(2)确定表达式是正弦函数还是余弦函数;
(3)确定转动的角速度ω=2πn(n的单位为r/s)、峰值Em=NBSω;
(4)写出表达式,代入角速度求瞬时值.
2.线圈在匀强磁场中匀速转动产生正弦式交变电流,产生的交变电流与线圈的形状无关.如图6所示,若线圈的面积与例2中题图所示线圈面积相同,则答案完全相同.
图6
三、交变电流的图象
例3
处在匀强磁场中的矩形线圈abcd以恒定的角速度绕ab边转动,磁场方向平行于纸面并与ab边垂直.在t=0时刻,线圈平面与纸面重合,如图7所示,线圈的cd边离开纸面向外运动.若规定沿a→b→c→d→a方向的感应电流为正,则图中能反映线圈中感应电流i随时间t变化的图象是( )
图7
答案 C
解析 线圈在磁场中从图示位置开始匀速转动时可以产生按余弦规律变化的交流电.对于图示起始时刻,线圈的cd边离开纸面向外运动,速度方向和磁场方向垂直,产生的电动势的瞬时值最大;用右手定则判断出电流方向为逆时针方向,与规定的正方向相同,所以C对.
1.从中性面开始计时是正弦曲线,从垂直中性面开始计时是余弦曲线.
2.由楞次定律或右手定则判断感应电流的方向.
1.(多选)如图所示的图象中属于交变电流的有( )
答案 ABC
解析 选项A、B、C中e的方向均发生了变化,故它们属于交变电流,但不是正弦式交变电流;选项D中e的方向未变化,故是直流.
2.(多选)下列各图中,线圈中能产生交变电流的有( )
答案 BCD
3.(多选)如图8甲所示,一矩形闭合线圈在匀强磁场中绕垂直于磁场方向的轴OO′以恒定的角速度ω转动.从线圈平面与磁场方向平行时开始计时,线圈中产生的交变电流按照如图乙所示的余弦规律变化,则在t=时刻( )
图8
A.线圈中的电流最大
B.穿过线圈的磁通量为零
C.线圈所受的安培力为零
D.线圈中的电流为零
答案 CD
解析 线圈转动的角速度为ω,则转过一圈用时,当t=时说明转过了圈,此时线圈位于中性面位置,所以穿过线圈的磁通量最大,B错误,由于此时感应电动势为零,所以线圈中电流为零,线圈所受的安培力为零,A错误,C、D正确.
4.如图9所示,匀强磁场的磁感应强度B=T,边长L=10cm的正方形线圈abcd共100匝,线圈电阻r=1Ω,线圈绕垂直于磁感线的轴OO′匀速转动,角速度ω=2πrad/s,外电路电阻R=4Ω.求:
图9
(1)转动过程中线圈中感应电动势的最大值.
(2)由图示位置(线圈平面与磁感线平行)转过30°角的过程中产生的平均感应电动势.
答案
(1)2V
(2)V
解析
(1)设转动过程中感应电动势的最大值为Em,
则Em=NBL2ω=100××0.01×2πV=2V.
(2)设由图示位置转过30°角的过程中产生的平均感应电动势为,则
=N,Δt=,ΔΦ=BL2sin30°,
代入数据解得=V.
一、选择题(1~7题为单选题,8~9题为多选题)
1.关于线圈在匀强磁场中绕轴匀速转动产生的交变电流,以下说法中正确的是( )
A.线圈平面每经过中性面一次,感应电流的方向就改变一次,感应电动势的方向不变
B.线圈每转动一周,感应电流的方向就改变一次
C.线圈平面每经过中性面一次,感应电动势和感应电流的方向都要改变一次
D.线圈转动一周,感应电动势和感应电流的方向都要改变一次
答案 C
解析 根据交流电的变化规律可得,如果从中性面开始计时有e=Emsinωt和i=Imsinωt;如果从垂直于中性面的位置开始计时有e=Emcosωt和i=Imcosωt,不难看出:
线圈平面每经过中性面一次,感应电流的方向就改变一次,感应电动势的方向也改变一次;线圈每转动一周,感应电流和感应电动势的方向都改变两次,故C正确.
2.如图1所示,一矩形线圈绕与匀强磁场垂直的中心轴OO′沿顺时针方向转动,引出线的两端分别与相互绝缘的两个半圆形铜环M和N相连.M和N又通过固定的电刷P和Q与电阻R相连.在线圈转动过程中,通过电阻R的电流( )
图1
A.大小和方向都随时间做周期性变化
B.大小和方向都不随时间做周期性变化
C.大小不断变化,方向总是P→R→Q
D.大小不断变化,方向总是Q→R→P
答案 C
解析 半圆环交替接触电刷,从而使输出电流方向不变,这是一个直流发电机模型,由右手定则知,外电路中电流方向是P→R→Q.
3.一个矩形线圈,在匀强磁场中绕一个固定轴匀速转动,当线圈处于如图2所示位置时,它的( )
图2
A.磁通量最大,磁通量变化率最大,感应电动势最大
B.磁通量最小,磁通量变化率最大,感应电动势最大
C.磁通量最大,磁通量变化率最小,感应电动势最小
D.磁通量最小,磁通量变化率最小,感应电动势最小
答案 B
解析 线圈处于题图所示位置时,它与磁感线平行,磁通量为零,磁通量变化率最大,感应电动势最大,选项A、C、D错误,B正确.
4.交流发电机工作时电动势为e=Emsinωt,若将发电机的转速提高一倍,同时将电枢所围面积减小一半,其他条件不变,则其电动势变为( )
A.e′=Emsin B.e′=2Emsin
C.e′=Emsin2ωtD.e′=sin2ωt
答案 C
解析 感应电动势的瞬时值表达式e=Emsinωt,而Em=nBωS,当ω加倍而S减半时,Em不变,故正确答案为C.
5.如图3所示是一台发电机的结构示意图,其中N、S是永久磁铁的两个磁极,它们的表面呈半圆柱面形状.M是圆柱形铁芯,它与磁极的柱面共轴,铁芯上有一矩形线框,可绕与铁芯M共轴的固定转轴旋转.磁极与铁芯之间的缝隙中形成方向沿半径、大小近似均匀的磁场.若从图示位置开始计时,当线框绕固定转轴匀速转动时,下列图象中能正确反映线框中感应电动势e随时间t变化规律的是( )
图3
答案 D
解析 因发电机的两个磁极N、S呈半圆柱面形状,磁极间的磁感线如图所示,
磁感应强度的大小不变,仅方向发生改变,故线框在磁场中转动时垂直切割磁感线,产生的感应电动势的大小不变,线框越过空隙段后,由于线框切割磁感线的方向发生变化,所以感应电动势的方向发生变化,综上所述,选项D正确.
6.一矩形线圈在匀强磁场中转动产生的交变电动势为e=10sin(20πt)V,则下列说法正确的是( )
A.t=0时,线圈位于中性面
B.t=0时,穿过线圈的磁通量为零
C.t=0时,线圈切割磁感线的有效速度最大
D.t=0.4s时,电动势第一次出现最大值
答案 A
解析 由电动势e=10sin(20πt)V知,计时从线圈位于中性面时开始,所以t=0时,线圈位于中性面,磁通量最大,但此时线圈切割磁感线的线速度方向与磁感线平行,切割磁感线的有效速度为零,A正确,B、C错误.当t=0.4s时,e=10sin(20π×0.4)V=0,D错误.
7.在垂直纸面向里的有界匀强磁场中放置了矩形线圈abcd.线圈cd边沿竖直方向且与磁场的右边界重合.线圈平面与磁场方向垂直.从t=0时刻起,线圈以恒定角速度ω=绕cd边沿如图4所示方向转动,规定线圈中电流沿abcda方向为正方向,则从t=0到t=T时间内,线圈中的电流I随时间t变化关系图象为( )
图4
答案 B
解析 在0~内,线圈在匀强磁场中匀速转动,故产生正弦式交流电,由楞次定律知,电流方向为负值;在~T,线圈中无感应电流;在T时,ab边垂直切割磁感线,感应电流最大,且电流方向为正值,故只有B项正确.
8.矩形线圈的匝数为50匝,在匀强磁场中绕垂直于磁场的轴匀速转动时,穿过线圈的磁通量随时间的变化规律如图5所示,下列结论正确的是( )
图5
A.在t=0.1s和t=0.3s时,电动势最大
B.在t=0.2s和t=0.4s时,电动势改变方向
C.电动势的最大值是157V
D.当t=0.4s时,磁通量变化率达到最大,其值为3.14Wb/s
答案 CD
解析 由Φ-t图象可知Φmax=BS=0.2Wb,T=0.4s,又因为n=50,所以Emax=nBSω=nΦmax·=157V,C正确.t=0.1s和t=0.3s时,Φ最大,e=0,电动势改变方向;t=0.2s和t=0.4s时,Φ=0,e=Emax最大,故A、B错误.根据线圈在磁场中转动时产生感应电动势的特点知,当t=0.4s时,最大,=3.14Wb/s,D正确.
9.矩形线圈在匀强磁场中匀速转动,所产生的交变电流的波形图如图6所示,下列说法中正确的是( )
图6
A.在t1时刻穿过线圈的磁通量达到峰值
B.在t2时刻穿过线圈的磁通量达到峰值
C.在t3时刻穿过线圈的磁通量的变化率达到峰值
D.在t4时刻穿过线圈的磁通量的变化率达到峰值
答案 BC
解析 从题图中可知,t1、t3时刻线圈中感应电流达到峰值,磁通量的变化率达到峰值,而磁通量最小,线圈平面与磁感线平行;t2、t4时刻感应电流等于零,磁通量的变化率为零,线圈处于中性面位置,磁通量达到峰值.正确答案为B、C.
二、非选择题
10.如图7甲所示,矩形线圈匝数N=100匝,ab=30cm,ad=20cm,匀强磁场的磁感应强度B=0.8T,绕轴OO′从图示位置开始匀速转动,角速度ω=100πrad/s,试求:
甲 乙
图7
(1)穿过线圈的磁通量最大值Φm为多大?
线圈转到什么位置时取得此值?
(2)线圈产生的感应电动势最大值Em为多大?
线圈转到什么位置时取得此值?
(3)写出感应电动势e随时间变化的表达式,并在图乙中作出图象.
答案 见解析
解析
(1)当线圈转至与磁感线垂直时,磁通量有最大值
Φm=BS=0.8×0.3×0.2Wb=0.048Wb
(2)线圈与磁感线平行时,感应电动势有最大值
Em=NBSω=480πV
(3)感应电动势的表达式e=Emcosωt=
480πcos(100πt)V
图象如图所示
11.一个面积为S的单匝矩形线圈abcd在匀强磁场中以其一条边ab为转轴匀速转动,磁场方向与转轴垂直.t=0时刻线圈位置如图8甲所示,线圈中感应电动势e与时间t的关系图象如图乙所示.感应电动势的最大值和周期可以从图中读出.则:
图8
(1)磁感应强度B多大?
(2)画出t=0时刻线圈与磁场间相对位置关系.
(3)在t=时,线圈平面与磁感应强度方向的夹角多大?
答案
(1)
(2)见解析图 (3)30°
解析
(1)由e-t图象可直接读得Em和T,
由Em=BSω和ω=得B=.
(2)t=0时线圈中感应电动势为最大值,故该时刻线圈与磁场的位置关系如图a或b所示.
(3)由图乙可知e=Emcosωt=Emcost,
当t=时,有e=Emcos=Emcos,
即线圈平面与磁感应强度方向的夹角θ==30°.