感测技术课程设计.docx

上传人:b****2 文档编号:2392053 上传时间:2022-10-29 格式:DOCX 页数:13 大小:682.07KB
下载 相关 举报
感测技术课程设计.docx_第1页
第1页 / 共13页
感测技术课程设计.docx_第2页
第2页 / 共13页
感测技术课程设计.docx_第3页
第3页 / 共13页
感测技术课程设计.docx_第4页
第4页 / 共13页
感测技术课程设计.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

感测技术课程设计.docx

《感测技术课程设计.docx》由会员分享,可在线阅读,更多相关《感测技术课程设计.docx(13页珍藏版)》请在冰豆网上搜索。

感测技术课程设计.docx

感测技术课程设计

《感测技术》课程设计

题目:

热释电体温计

学号姓名:

 

老师:

袁新娣

时间:

2013年11月28日

一:

系统功能

热释电体温计的设计功能:

本课题是通过人体热释电红外传感器来测试一定范围内人通过检测人体温度,当人进入测试范围时由菲涅尔透镜的红外线感应到,接受到感应,把感应反映到热释电传感器得到放大等处理,通过A/D转换,最小系统等的数据处理最后用单片机处理经过LCD12864屏幕来显示测的的结果,即人体温度。

二:

系统各模块硬件介绍

 

(一)热释电人体红外线传感器的基本结构和原理

热释电红外(PIR)传感器,亦称为热红外传感器,是一种能检测人体发射的红外线的新型高灵敏度红外探测元件。

它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。

将输出的电压信号加以放大,便可驱动各种控制电路,如作电源开关控制、防盗防火报警等。

目前市场上常见的热释电人体红外线传感器主要有上海赛拉公司的SD02、PH5324,德国Perkinelmer公司的LHi954、LHi958,美国Hamastsu公司的P2288,日本NipponCeramic公司的SCA02-1、RS02D等。

虽然它们的型号不一样,但其结构、外型和特性参数大致相同,大图1热释电传感器实物图

部分可以彼此互换使用。

热释电红外线传感器由探测元、滤光窗和场效应管阻抗变换器等三大部分组成,如图1所示。

对不同的传感器来说,探测元的制造材料有所不同。

如SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3制成。

将这些材料做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容。

因为这两个小电容是做在同一硅晶片上的,因此形成的等效小电容能自身产生极化,在电容的两端产生极性相反的正、负电荷。

传感器中两个电容是极性相

反串联的。

当传感器没有检测到人体辐射出的红外线信号时,在电容两端产生极性相反、电量相等的正、负电荷,所以,正负电荷相互抵消,回路中无电流,传感器无输出。

当人体静止在传感器的检测区域内时,照射到两个电容上的红外线光能

能量相等,且达到平衡,极性相反、能图2双探测元热释电红外传感器

量相等的光电流在回路中相互抵消,传感器仍然没有信号输出。

当人体在传感器的检测区域内移动时,照射到两个电容上的红外线能量不相等,光电流在回路中不能相互抵消,传感器有信号输出。

综上所述,传感器只对移动或运动的人体和体温近似人体的物体起作用。

滤光窗是由一块薄玻璃片镀上多层滤光层薄膜而成的,能够有效地滤除7.0~14um波长以外的红外线。

人体的正常体温为36~37.5℃,即309~310.5K,其辐射的最强的红外线的波长为λm=2989/(309~310.5)=9.67~9.64um,中心波长为9.65um,正好落在滤光窗的响应波长的中心。

所以,滤光窗能有效地让人体辐射的红外线通过,而最大限度地阻止阳光、灯光等可见光中的红外线的通过,以免引起干扰。

热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。

由于探测元输出的是电荷信号,不能直接使用,因而需要将其转换为电压形式。

场效应管输入阻抗高达104MΩ,接成共漏极形式来完成阻抗变换。

使用时D端接电源正极,G端接电源负极,S端为信号输出。

对于移动速度非常缓慢的物体,如阳光,两个电容上的红外线光能能量仍然可以看作是相等的,在回路中相互抵消;再加上传感器的响应频率很低(一般为0.1~10Hz),即传感器对红外光的波长的敏感范围很窄(一般为5~15um),因此,传感器对它们不敏感,因而无输出。

被动式红外报警器主要由光学系统、热释电红外传感器、信号滤波和放大、信号处理和报警电路等几部分组成,其结构框图如图2所示。

图中,菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。

当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而加强其能量幅度。

热释电红外传感器是报警器设计中的核心器件,它可以把人体的红外信号转换为电信号以供信号处理部分使用;信号处理主要是把传感器输出的微弱电信号进行放大、滤波、延迟、比较,为报警功能的实现打下基础。

图3报警器结构图

 

 报警器结构图是将待测目标、菲涅尔透镜、热释电红外传感器相结合使用时的工作原理示意图。

人体辐射的红外线中心波长为9~10um,而探测元件的波长灵敏度在0.2~20um范围内几乎稳定不变。

在传感器顶端开设了一个装有滤光镜片的窗口,这个滤光片可通过光的波长范围为7~10um,正好适合于人体红外辐射的探测,而对其它波长的红外线由滤光片予以吸收,这样便形成了一种专门用作探测人体辐射的红外线传感器。

如图4所示。

BISS0001是一款高性能的传感信号处理集成电路。

静态电流极小,配以热释电红外传感器和少量外围元器件即可构成被动式的热释电红外传感器,广泛用于图4人体通过传感器产生的信号

安防、自控等领域能。

BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路,内部电路如图5所示。

使用时,根据实际需要,利用运放OP1组成传感信号预处理电路,将信号放大。

后耦合给运放OP2,再进行第二级放大,同时将直流电位抬高为VM(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。

由于VH≈0.7VDD、VL≈0.3VDD,所以,当VDD=5V时,可有效抑制±1V的噪声干扰,提高系统的可靠性。

COP3是一个条件比较器。

当输入电压Vc>V时,COP3输出为高电平,进入延时周期。

当A端接“0”电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。

当Tx时间结束时,Vo下跳回低电平,同时启动封锁时间定时器而进入封锁周期Ti。

在Ti时间内,任何V2的变化都不能使Vo跳变为有效状态(高电平),可有效抑制负载切换过程中产生的各种干扰。

图5 BISS0001内部电路图

BISS0001的典型应用电路如图6所示。

运算放大器OP1将热释电红外传感器的输出信号作第一级放大,然后由C3耦合给运算放大器OP2进行第二级放大,再经由电压比较器COP1和COP2构成的双向鉴幅器处理后,检出有效触发信号Vs去启动延迟时间定时器,输出信号Vo经晶体管T1放大驱动继电器去接通负载。

 R3为光敏电阻,用来检测环境照度。

当作为照明控制时,若环境较明亮,R3的电阻值会降低,使9脚的输入保持为低电平,从而封锁触发信号Vs。

SW1是工作方式选择开关,当SW1与1端连通时,芯片处于可重复触发工作方式;当SW1与2端连通时,芯片则处于不可重复触发工作方式。

输出延迟时间Tx由外部的R9和C7的大小调整,值为Tx≈24576xR9C7;触发封锁时间Ti由外部的R10和C6的大小调整,值为Ti≈24xR10C6。

            图6 BISS0001典型应用电路

 

下面说下具体的应用及注意的地方:

人体都有恒定的体温,一般在37度,所以会发出特定波长10μm左右的红外线,被动式红外探头就是靠探测人体发射的10μm左右的红外线而进行工作的。

人体发射的10μm左右的红外线通过菲涅尔滤光片增强后聚集到红外感应源上。

红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。

 

(1)这种探头是以探测人体辐射为目标的。

所以热释电元件对波长为10μm左右的红外辐射必须非常敏感。

  

(2)为了仅仅对红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。

  (3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。

而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。

  (4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。

(5)菲涅尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。

被动式热释电红外探头的优缺点:

  优点:

  本身不发任何类型的辐射,器件功耗很小,隐蔽性好。

价格低廉。

  缺点:

  ◆容易受各种热源、光源干扰

  ◆被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收。

  ◆易受射频辐射的干扰。

  ◆环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。

抗干扰性能:

◆防小动物干扰

  探测器安装在推荐地使用高度,对探测范围内地面上地小动物,一般不产生报警。

 ◆ 抗电磁干扰

  探测器的抗电磁波干扰性能符合GB10408中4.6.1要求,一般手机电磁干扰不会引起误报。

 ◆ 抗灯光干扰

  探测器在正常灵敏度的范围内,受3米外H4卤素灯透过玻璃照射,不产生报警。

  红外线热释电传感器的安装要求:

  红外线热释电人体传感器只能安装在室内,其误报率与安装的位置和方式有极大的关系,正确的安装应满足下列条件:

 ◆ 红外线热释电传感器应离地面2.0-2.2米。

 ◆ 红外线热释电传感器远离空调,冰箱,火炉等空气温度变化敏感的地方。

◆红外线热释电传感器探测范围内不得隔屏、家具、大型盆景或其他隔离物。

◆红外线热释电传感器不要直对窗口,否则窗外的热气流扰动和人员走动会引起误报,有条件的最好把窗帘拉上。

红外线热释电传感器也不要安装在有强气流活动的地方。

红外线热释电传感器对人体的敏感程度还和人的运动方向关系很大。

热释电红外传感器对于径向移动反应最不敏感,而对于横切方向(即与半径垂直的方向)移动则最为敏感.在现场选择合适的安装位置是避免红外探头误报、求得最佳检测灵敏度极为重要的一环。

菲涅尔透镜

菲涅尔透镜概述:

菲涅尔透镜多是由聚烯烃材料注压而成的薄片,镜片表面一面为光面,另一面刻录了由小到大的同心圆。

菲涅尔透镜的在很多时候相当于红外线及可见光的凸透镜,效果较好,但成本比普通的凸透镜低很多。

菲涅尔透镜可按照光学设计或结构进行分类。

菲涅尔透镜作用有两个:

一是聚焦作用;二是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR(被动红外线探测器)上产生变化热释红外信号。

菲涅尔透镜作用:

菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。

当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而强其能量幅度。

菲涅尔透镜,简单的说就是在透镜的一侧有等距的齿纹,通过这些齿纹,可以达到对指定光谱范围的光带通(反射或者折射)的作用。

传统的打磨光学器材的带通光学滤镜造价昂贵。

菲涅尔透镜可以极大的降低成本。

典型的例子就是PIR。

PIR广泛的用在警报器上。

如果你拿一个看看,你会发现在每个PIR上都有个塑料的小帽子。

这就是菲涅尔透镜。

小帽子的内部都刻上了齿纹。

这种菲涅尔透镜可以将入射光的频率峰值限制到10微米左右(人体红外线辐射的峰值)。

菲涅耳透镜可以把透过窄带干涉滤光镜的光聚焦在硅光电二级探测器的光敏面上,菲涅尔透镜不能用任何有机溶液(如酒精等)擦拭,除尘时可先用蒸馏水或普通净水冲洗,再用脱脂棉擦拭。

 

(二)LCD12864显示屏

 

下图7为LCD12864的管脚

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1