碳纤维在航空领域的应用毕业论文.docx

上传人:b****8 文档编号:23856233 上传时间:2023-05-21 格式:DOCX 页数:50 大小:71.16KB
下载 相关 举报
碳纤维在航空领域的应用毕业论文.docx_第1页
第1页 / 共50页
碳纤维在航空领域的应用毕业论文.docx_第2页
第2页 / 共50页
碳纤维在航空领域的应用毕业论文.docx_第3页
第3页 / 共50页
碳纤维在航空领域的应用毕业论文.docx_第4页
第4页 / 共50页
碳纤维在航空领域的应用毕业论文.docx_第5页
第5页 / 共50页
点击查看更多>>
下载资源
资源描述

碳纤维在航空领域的应用毕业论文.docx

《碳纤维在航空领域的应用毕业论文.docx》由会员分享,可在线阅读,更多相关《碳纤维在航空领域的应用毕业论文.docx(50页珍藏版)》请在冰豆网上搜索。

碳纤维在航空领域的应用毕业论文.docx

碳纤维在航空领域的应用毕业论文

毕业论文声明

本人郑重声明:

1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。

除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。

对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。

本人完全意识到本声明的法律结果由本人承担。

2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。

本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。

3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。

4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。

论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。

论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。

对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。

 

学位论文作者(签名):

年月

关于毕业论文使用授权的声明

本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。

本人完全了解大学有关保存,使用毕业论文的规定。

同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。

本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。

如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。

本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。

本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:

按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。

在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。

论文作者签名:

日期:

指导教师签名:

日期:

毕业论文

 

论文名称碳纤维在航空领域的应用

毕业设计(论文)任务书

2012届:

2015专业(班):

姓名:

课题名称、主要内容和基本要求

课题名称:

碳纤维在航空领域的应用

主要内容:

在的毕业实习过程中,注意了解公司基本情况特别是自己工作所涉及的内容。

对自己的工作性质和工作意义有了初步认识,具备一定的产品制备、检测、数据分析等能力。

基本要求:

1.了解所接触的一些基本知识,能查找相关资料

2.掌握工作所涉及产品的制作工艺以及相关的检测项目、检测方法

3.按要求撰写论文。

进度安排

周次

工作内容

执行情况

1-4

到实习单位报到,参加公司、部门和班组三级培训;熟悉工作内容。

完成

5-10

实习,学习所涉及技术基础知识和生产流程;记录顶岗实习日记,并确定论文题目,收集相关资料。

完成

11-14

掌握复相关的工艺知识;撰写毕业论文初稿

完成

15-16

撰写和修改毕业论文;制作答辩PPT。

完成

17

论文答辩。

完成

 

指导教师评语:

指导教师签名:

评阅教师评语

评阅教师签名:

毕业设计(论文)成绩:

答辩小组组长签名:

年月日

碳纤维在航空领域的应用

摘要:

本文介绍了碳纤维的分类和力学性能,并着重介绍了碳纤维复合材料的特性及成型工艺,最后阐述了碳纤维复合材料在国内外航空领域应用情况。

关键词:

碳纤维;碳纤维复合材料;航空领域

 

1碳纤维

 

 

1.1碳纤维的概念

碳纤维(carbonfiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。

它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。

[1]碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用方面都是重要材料。

它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。

碳纤维具有许多优良性能,碳纤维的轴向强度和模量高,密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好,X射线透过性好。

良好的导电导热性能、电磁屏蔽性好等。

碳纤维与传统的玻璃纤维相比,杨氏模量是其3倍多;它与凯夫拉纤维相比,杨氏模量是其2倍左右,在有机溶剂、酸、碱中不溶不胀,耐蚀性突出。

1.2组成结构

碳纤维是含碳量高于90%的无机高分子纤维。

其中含碳量高于99%的称石墨纤维。

碳纤维的微观结构类似人造石墨是乱层石墨结构各平行层面间的各个碳原子,排列不如石墨那样规整,层与层之间借范德华力连接在一起[1]。

其结构如图

(1)所示:

 

1.3碳纤维的物理性能

(1)力学性能优异:

碳纤维拉伸强度约为2到7GPa,拉伸模量约为200到700GPa。

密度约为1.5到2.0克每立方厘米;这使得碳纤维在所有高性能纤维中具有最高的比强度和比模量。

同钛、钢、铝等金属材料相比,碳纤维在物理性能上具有强度大、模量高、密度低、线膨胀系数小等特点[2]。

(2)外形有显著的各向异性柔软:

可加工成各种织物,又由于比重小,沿纤维轴方向表现出很高的强度,碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。

碳纤维树脂复合材料抗拉强度一般都在3500兆帕以上,是钢的7到9倍,与传统的玻璃纤维相比,杨氏模量(指表征在弹性限度内物质材料抗拉或抗压的物理量)是玻璃纤维的3倍多。

(3)碳纤维还具有极好的纤度(纤度的表示法之一是9000米长纤维的克数)拉力高达300kg每微米。

(4)耐高温:

在不接触空气和氧化剂时,碳纤维能够耐受3000度以上的高温,具有突出的耐热性能,与其他材料相比,碳纤维要温度高于1500℃时强度才开始下降,而且温度越高,纤维强度越大。

(5)另外碳纤维还具有良好的耐低温性能,如在液氮温度下也不脆化。

1.4碳纤维的分类

碳纤维的五种分类方法[3]如表(1-1)所示:

表1-1碳纤维的五种分类方法

原料来源

聚丙烯腈基碳纤维

沥青基碳纤维

粘胶基碳纤维

酚醛基碳纤维

气相生长碳纤维

性能

通用型

高强型

中模高强型

高模型

超高模型

状态

长丝

短纤维

短切纤维

按力学性能

通用型

高性能型

规格

宇航级

工业级

(1)其中用量最大的是聚丙烯腈PAN基碳纤维。

市场上90%以上碳纤维以PAN基碳纤维为主。

由于碳纤维神秘的面纱尚未完全揭开,人们还不能直接用碳或石墨来制取,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)为原料,将有机纤维与塑料树脂结合在一起炭化制得碳纤维。

(2)碳纤维按产品规格的不同被划分为宇航级和工业级两类,由于碳纤维具有无可比拟的优良材料特性所以碳纤维逐渐成为航空上不可缺少的材料。

1.5碳纤维的制备

碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得,用量最大的是聚丙烯腈PAN基碳纤维。

目前应用较普遍的碳纤维主要是聚丙烯腈碳纤维和沥青碳纤维。

碳纤维的制造包括纤维纺丝、热稳定化(预氧化)、碳化、石墨化等4个过程。

其间伴随的化学变化包括,脱氢、环化、预氧化、氧化及脱氧等[4]。

制备流程如下图

(2)所示:

 

(2)碳纤维的制备流程

(1)原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。

制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。

制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。

作为烧蚀材料用的粘胶基碳纤维,其原丝要求不含碱金属离子。

(2)预氧化(聚丙烯腈纤维200~300℃)、不熔化(沥青200~400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。

(3)碳化,其温度为:

聚丙烯腈纤维1000~1500℃,沥青1500~1700℃,粘胶纤维400~2000℃。

(4)石墨化,聚丙烯腈纤维为2500~3000℃,沥青2500~2800℃,粘胶纤维3000~3200℃。

(5)表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。

(6)上浆处理,防止纤维损伤,提高与树脂母体的亲和性。

所得纤维具有各种不同的断面结构。

 

1.6制备技术要点[6]

(1)实现原丝高纯化、高强化、致密化以及表面光洁无暇是制备高性能碳纤维的首要任务。

碳纤维系统工程需从原丝的聚合单体开始,实现一条龙生产。

原丝质量既决定了碳纤维的性质,又制约其生产成本。

优质PAN原丝是制造高性能碳纤维的首要必备条件。

 

(2)杂质缺陷最少化,这是提高碳纤维拉伸强度的根本措施,也是科技工作者研究的热门课题。

在某种意义上说,提高强度的过程实质上就是减少、减小缺陷的过程。

 

(3)在预氧化过程中,保证均质化的前提下,尽可能缩短预氧化时间。

这是降低生产成本的方向性课题。

 

(4)研究高温技术和高温设备以及相关的重要构件。

高温炭化温度一般在1300~1800℃,石墨化一般在2500~3000℃。

在如此高的温度下操作,既要连续运行、又要提高设备的使用寿命,所以研究新一代高温技术和高温设备就显得格外重要。

如在惰性气体保护、无氧状态下进行的微波、等离子和感应加热等技术。

2碳纤维增强复合材料

在当代高科技产物都是出于军事领域,碳纤维复合材料也是一样.在20世纪50年代,世界强国都开展了对太空领域的探索,所以碳纤维复合材料也应运而生,随着科技的不断进步,碳纤维复合材料制品也进入了平常人的生活中,小到羽毛球拍大到汽车无处不见到碳纤维何处材料的身影.碳纤维合成材料的强度要高于铜,自身重量却小于铝.与玻璃纤维相比,碳纤维还有高强度、高模量的特点,是非常优秀的增强型材料.它不仅可以对塑料、金属、陶瓷灯材料进行增强.还可以做为新型的非金属材料进行应用,它的组要特点有:

高强度、耐疲劳、抗蠕变、导电、高模量、抗高温、抗腐蚀、传热、比重小和热胀胀系数小等优异性能[7]。

2.1碳纤维增强复合材料种类

尽管碳纤维可单独使用发挥某些功能,然而,它属于脆性材料,只有将它与基体材料牢固地结合在一起时,才能利用其优异的力学性能,使之更好地承载负荷.因此,碳纤维主要还是在复合材料中作增强材料.根据使用目的不同可选用各种基体材料和复合方式来达到所要求的复合效果.碳纤维可用来增强树脂、碳、金属及各种无机陶瓷,而目前使用得最多、最广泛的是树脂基复合材料[8]。

2.1.1碳纤维增陶瓷基复合材料

陶瓷具有优异的耐蚀性、耐磨性、耐高温性和化学稳定性,广泛应用于工业和民用产品。

但是对裂纹、气孔和夹杂物等细微的缺陷很敏感.用碳纤维增强陶瓷可有效地改善性改变陶瓷的脆性断裂形态,同时阻止裂纹在陶瓷基体中的迅速传播、扩展。

目前国内外比较成熟的碳纤维增陶瓷材料是碳纤维增强碳化硅材料,因其具有优良的高温力学性能,在高温下服役不需要额外的隔热措施,因而在航空发动机、可重复使用航天飞行器等领域具有广泛应用[9]。

2.1.2碳/碳复合材料

碳/碳复合材料是碳纤维增强碳基复合材料的简称,也是一种高级复合材料,它是由碳纤维或织物、编织物等增强碳基复合材料构成,碳/碳复合材料主要由各类碳组成,即纤维碳,树脂碳和沉积碳,这种完全由人工设计、制造出来的纯碳元素构成的复合材料具有许多优异性能,除具备高强度、高刚性、尺寸稳定、抗氧化和耐磨损等特性外,还具有较高的断裂韧性和假塑性,特别是在高温环境中,强度高、不熔不燃,仅是均匀烧蚀,这是任何金属材料无法与其比拟的,因此广泛应用于导弹弹头、固体火箭发动机喷管以及飞机刹车盘等高科技领域[10]。

2.1.3碳纤维增强金属基复合材料

碳纤维增强金属基复合材料是以碳纤维为增强纤维,金属为基体的复合材料.碳纤维增强金属基复合材料与金属材料相比,具有高的比强度和比模量与陶瓷相比具有高的韧性和耐冲击性能,金属基体多采用铝、镁、镍、钛及它们的合金等.其中碳纤维增强铝、镁复合材料的制备技术比较成熟,制造碳纤维增强金属基复合材料的主要技术难点是碳纤维的表面涂层,以防止在复合过程中损伤碳纤维从而使复合材料的整体性能下降.目前在制备碳纤维增强金属基复合材料时碳纤维的表面改性主要采用气相沉积、液钠法等.但因其过程复杂、成本高,限制了碳纤维增强金属基复合材料的推广应用。

2.1.4碳纤维增强树脂复合材料

碳纤维增强树脂基复合材料(CFRP)是目前最先进的复合材料之一,它以轻质、高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗烧蚀材料,是其他纤维增强复合材料所无法比拟的.碳纤维增强树脂复合材料所用的基体树脂主要分为两大类:

一类是热固性树脂,另一类是热塑性树脂.热固性树脂由反应性低分子量集体或带有活性基团高分子量聚合物组成,成型过程中在固化剂或热作用下进行交联、缩聚,形成不熔不溶的交联体型结构.在复合材料中常采用的有环氧树脂、双马来酰亚胺树脂、聚酰亚胺树脂以及酚醛树脂等.热塑性树脂由线型高分子量聚合物组成,在一定条件下溶解熔融.只发生物理变化.常用的有聚乙烯、尼龙、聚四氟乙烯以及聚醚醚酮等[11]。

在碳纤维增强树脂基复合材料中,碳纤维起到增强作用.而树脂基体则使复合材料成型为承载外力的整体,并通过界面传递载荷于碳纤维,它对碳纤维复合材料的技术性能、成型工艺以及产品价格等都有直接的影响,碳纤维的复合方式也会对复合材料的性能产生影响.在制备复合材料时碳纤维大致可分为两种类型:

连续纤维和短纤维,连续纤维增强的复合材料通常具有更好的机械性能但由于其制造成本较高并不适应于大规模的生产.短纤维复合材料可采用与树脂基体相同的加工工艺.如模压成型、注射成型以及挤出成型等,当采用适合的成型工艺时.短纤维复合材料甚至可以具备与连成续纤维复合材料相媲美的机械性能并且适宜于大规模的生产,因此短纤维复合材料近来得到了广泛的应用[12]。

2.2碳纤维复合材料的特性

碳纤维增强复合材料(CFRP)由于与传统材料相比具有独特的力学性能,电阻特性,耐磨损性,界面结合强度,吸波性等优良性能,在国内引起了广大科研工作者的兴趣和喜好,并在近今年取得了很多成就。

2.2.1强度

金属材料在外载荷的作用下抵抗塑形变形和断裂的能力称为强度。

根据受力种类的不同分为以下几种:

(1)抗压强度--材料承受压力的能力;

(2)抗拉强度--材料承受拉力的能力;(3)抗弯强度--材料对致弯外力的承受能力;(4)抗剪强度--材料承受剪切力的能力。

本文将进行简单的阐述[13]。

2.2.2抗拉强度

由连续增强碳纤维和树脂基体组成的复合材料-碳纤维增强复合材料(CFRP)与传统加固材料相比,CFRP具有抗拉强度高、自重轻、施工方便等优点。

罗小萍等对炭纤维进行了表面化学镀镍处理,采用粉末冶金热挤压法将镀层炭纤维与镁基体复合,当炭纤维含量为4.0%的镁基预制体采用压制压力为420MPa,烧结温度为550℃,保温0.5h后,480℃用280MPa的压力进行热挤压得到镀层炭纤维/镁基复合材料的抗拉强度达167MPa,同时硬度、屈服强度分别为120MPa,125MPa。

2.2.3弯曲强度

艾娇艳等将碳纤维增强聚碳酸酯(PC)与玻璃纤维增强聚碳酸酯(PC)复合材料性能对比进行了研究,发现碳纤维增强PC在机械性能、电性能和加工性等方面有明显的提高。

随着碳纤维含量的增加,拉伸强度、弯曲强度、弯曲模量明显呈上升趋势。

龚伟平等采用溶胶-凝胶法在炭纤维表面涂覆TiO2薄膜,通过球磨混合均匀、热压烧结制备炭纤维增强羟基磷灰石复合材料,用三点弯曲法测试复合材料的弯曲强度。

结果表明,球磨时间影响羟基磷灰石中炭纤维的长度及其分布,球磨时间以2.5h为宜。

表面涂层TiO2的炭纤维增强羟基磷灰石的弯曲强度比未涂层的高,尤以用丙酮除胶、盐酸与水量比例为1.0:

8进行TiO2涂层,得到的炭纤维增强羟基磷灰石的弯曲强度最高。

在炭纤维表面均匀涂覆一层厚度合适TiO2薄膜有利于提高炭纤维增强羟基磷灰石复合材料的力学性能。

2.2.4抗压强度

项东虎等采用直碳纤维和螺旋碳纤维增强PTFE复合材料,发现直纤维增强复合材料的硬度呈先增大后减小的趋势,螺旋碳纤维增强复合材料的硬度则缓慢提高,两种纤维均可使抗压强度提高,且螺旋碳纤维的效果更为明显[14]。

2.2.5断裂韧性

高弹性模量的碳纤维对材料既能增强,又可显著增韧。

碳纤维增强镁合金层合板具有比玻璃纤维增强铝合金层合板更高界面断裂韧性;在水泥砂浆中掺入碳纤维可显著提高水泥砂浆的断裂韧度和断裂能,且随着碳纤维掺量的增加,断裂韧度和断裂能随之增大,水泥基材料的密度和弹性模量降低、泊松比也随之增加;采用碳纤维填充改善聚四氟乙烯(PTFE),大大改善了纯PTFE的塑性性能[13]。

2.2.6耐磨性

项东虎等选用螺旋碳纤维(CMCs)和直碳纤维(SCF)填充改善聚四氟乙烯(PTFE)的综合性能。

测试了纯PTFE及其复合材料的摩擦磨损、硬度、抗压强度等性能,并利用扫描电镜对磨损表面及残留在表面的磨屑和转移膜进行形貌观察。

结果表明:

添加其中任何一种碳纤维都会不同程度地提高PTFE复合材料的摩擦因数,高载下的摩擦因数稍低于低载下的摩擦因数,另外,随着碳纤维含量的增加,其耐磨性能逐步提高,磨损率下降[15]。

2.2.7灵敏性

碳纤维水泥基复合材料能以电信号输出的形式反映自身受力状况和内部的损伤程度。

碳纤维水泥基复合材料界面性能对其功能响应特性的具体机理为:

(1)碳纤维在拔出力的作用下,试样界面力及电阻变化率随着拉伸位移的增加而逐渐增大,当界面力达到极值时,纤维与基体间的结合被破坏,电阻迅速上升。

试验所表现出的这种电学特性可用隧道效应理论来描述。

界面应力的作用使材料内部导电网络发生改变,引起隧道电流的变化,从而导致了电阻的变化。

(2)在荷载作用下,碳纤维基复合材料通过界面将载荷传递给碳纤维,碳纤维和基体之间界面应力的变化导致界面结构变化,材料内部的导电网络发生改变,其电导率变化能够反映材料在受载过程中的应力-应变并具有灵敏的响应,材料表现出机敏性。

连续碳纤维增强基复合材料在弹性阶段,其电阻随拉力增大而可逆增大,随拉力减小而可逆减小。

2.2.8电阻特性

碳纤维水泥基复合材料CFRC电阻率随着碳纤维体积分数的提高而下降;碳纤维掺入量存在一个饱和点,超过此饱和点,碳纤维水泥基复合材料的电阻率变化趋于稳定;碳纤维水泥基复合材料电阻率随加载频率的增大而降低。

不同成型压力制备的复合材料电阻率均随温度升高而呈先增大后减小的趋势[20]。

较小成型压力制备的CFRC,其临界温度为75-100℃;较大成型压力制备的CFRC,其临界温度为100-120℃。

杨淑霞[21]采用电镀Cu碳纤维与化学镀Cu的Ti3SiC2粉及Cu粉进行湿混,通过真空热压烧结法制备碳纤维增强的Cu-Ti3SiC2复合材料,电阻率随碳纤维含量的增加而增大;Ti3SiC2含量在15%-20%之间电阻率变化较大;在Ti3SiC2含量为20%,碳纤维含量为8%时,所制备的Cf-Cu-Ti3SiC2复合材料综合性能最好。

2.2.9温敏性

碳纤维水泥基材料(CFRC)具有良好的温敏性,在-10-60℃的温度范围内,CFRC材料的电阻率随温度的升高而减小,灵敏度随着碳纤维掺量的增加而减小。

在温度升高的初始阶段,试件电阻率随温度的升高而下降,呈现NTC效应;当温度升高到一定数值,电阻率随温度的升高而逐渐升高,呈现出PTC效应,并且随着碳纤维掺量的变化,NTC/PTC转变温度也发生变化[16]。

2.2.10界面结合强度

2006年,陈腾飞等用溶胶-凝胶法在炭纤维表面涂敷纳米级的TiO2涂层,并采用热压法制备炭纤维增强羟基磷灰石复合材料。

结果表明,通过溶胶-凝胶法制备的TiO2涂层与炭纤维表面结合良好涂层后炭纤维增强羟基磷灰石中的炭纤维表面和周围羟基磷灰石以及炭纤维之间有纳米级TiO2纤维呈网状分布,将有利于提高炭纤维/羟基磷灰石间的界面结合强度。

2008年,王超等采用酚醛树脂作为炭纤维表面处理剂,酚醛树脂和炭纤维表面发生了化学反应,而且酚醛树脂处理剂浓度越高,和炭纤维表面发生反应的基团也越多,表面越光滑平整,处理后的纤维复合材料断口,炭纤维纤维拔脱和界面开裂现象很少,断口有明显的剪切痕迹,由此可知酚醛树脂处理后的复合材料界面粘结性能得到很大的改善,而且界面粘结性能强烈依靠处理剂浓度。

说明经酚醛树脂作为炭纤维表面处理剂可以显著提高多种炭纤维和环氧树脂界面强度。

2009年,黄元飞等发现涂层的碳纤维与Mg基体浸润性较差,碳纤维在Cf/Mg复合材料微观组织中分布不均匀,界面结合强度较弱。

之后在碳纤维表面包覆Ni或SiO2涂层使碳纤维与Mg基体的润湿性得到了改善;包覆Ni涂层的碳纤维在Mg基体中分布均匀,并在其界面处生成金属间化合物Mg2Ni,界面为强结合;碳纤维表面的SiO2涂层与Mg进行少量的反应生成MgO和Si,界面结合好,能很好地传递载荷。

2010年,吕立斌等通过对碳纤/玻纤缝编织物增强复合材料的织物组织的选择、浸胶前后的拉伸基本性能、与混凝土薄板界面黏结性能进行研究,发现复合材料采用缝编织物基本能使纱线的强力利用率提高,织物浸胶后,拉伸强力明显提高。

采用浸胶的纤维编织网能改善纤维编织网和混凝土的黏结性能,提高拉拔荷载峰值,与混凝土薄板界面的黏结性能也有所增强。

2.2.11吸波性

利用弓形反射法(NRL)测试了碳纤维掺量分别为0.2%、0.4%、0.6%、0.8%和1.0%(质量分数)时碳纤维增强水泥基复合材料(CFRC)在低频段4-8GHz和高频段8-18GHz时的反射率,讨论了纤维掺量、频率、反射率之间的关系。

结果发现,在纤维掺量相同条件下:

低频段时,反射率<-10dB,CFRC表现出吸波性;高频段且纤维掺量超过0.6%(质量分数)时,反射率>-10dB,CFRC对电磁波表现出反射性。

随着纤维掺量的增加,低频段时反射率先降低、后又有所回升,吸波性由弱变强、又变弱,纤维掺量为0.6%(质量分数)时出现最小反射率-15.0dB;高频段时反射率总体上呈上升趋势,材料对电磁波的反射性越来越强,纤维掺量为0.4%(质量分数)时出现最小反射率-19.4dB。

2.3碳纤维增强复合材料的成型

铺层设计是碳纤维复合材料成型的关键,它包括铺层角度、铺层顺序铺层的层数的设计、而且铺层设计是直接决定材料性能和强度的主要工序.所以在构件的设计中要优先考虑支撑杆轴向的膨胀系数的要求,还要考虑其强度,并且要针对材料的实际实用性和加工方式。

常见的加工工艺和相关注意事项如下:

2.3.1热缩工艺

采用热缩管并利用其自身特性对复合材料进行压实就热缩工艺,热缩工艺主要使树脂进行软化,当热缩管达到收缩温度的同时就会出现收缩变

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 职业规划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1