数字图像处理实验报告图像复原实验.docx

上传人:b****7 文档编号:23450342 上传时间:2023-05-17 格式:DOCX 页数:18 大小:810.35KB
下载 相关 举报
数字图像处理实验报告图像复原实验.docx_第1页
第1页 / 共18页
数字图像处理实验报告图像复原实验.docx_第2页
第2页 / 共18页
数字图像处理实验报告图像复原实验.docx_第3页
第3页 / 共18页
数字图像处理实验报告图像复原实验.docx_第4页
第4页 / 共18页
数字图像处理实验报告图像复原实验.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

数字图像处理实验报告图像复原实验.docx

《数字图像处理实验报告图像复原实验.docx》由会员分享,可在线阅读,更多相关《数字图像处理实验报告图像复原实验.docx(18页珍藏版)》请在冰豆网上搜索。

数字图像处理实验报告图像复原实验.docx

数字图像处理实验报告图像复原实验

 

实验报告

 

课程名称数字图像处理导论

专业班级_______________

姓名_______________

学号_______________

 

电气与信息学院

和谐勤奋创新

 

实验题目

图像复原实验-空域滤波复原

实验室

DSP室&信号室

实验时间

2015年10月13日

实验类别

设计

同组人数

2

成绩

指导教师签字:

一.实验目的

1.掌握图像滤波的基本定义及目的。

2.理解空间域滤波的基本原理及方法。

3.掌握进行图像的空域滤波的方法。

二.实验容

1.读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一图显示在同一图像窗口中。

2.对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。

3.使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。

4.运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像(提示:

利用fspecial函数的’average’类型生成均值滤波器)。

5.对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

6.自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。

三.实验具体实现

1.读出(自己选定.tif)这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一图显示在同一图像窗口中。

I=imread('trees.tif');

subplot(1,3,1)

imshow(I);

title('OriginalImage');

J=imnoise(I,'salt&pepper',0.05);%noisedensity=0.05

subplot(1,3,2)

imshow(J);

title('salt&pepper');

K=imnoise(I,'gaussian',0.01,0.01);

subplot(1,3,3)

imshow(K);

title('gaussian')

 

 

2.对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。

I=imread('moon.tif');

H=fspecial('sobel');

subplot(2,2,1)

imshow(I);

title('QriginalImage');

Sobel=imfilter(I,H,'replicate');

subplot(2,2,2)

imshow(Sobel);

title('SobelImage')

H=fspecial('laplacian',0.4);

lap=imfilter(I,H,'replicate');

subplot(2,2,3)

imshow(lap);

title('LaplacianImage')

H=fspecial('gaussian',[33],0.5);

gaussian=imfilter(I,H,'replicate');

subplot(2,2,4)

imshow(gaussian);

title('GaussianImage')

3.使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。

originalRGB=imread('trees.tif');

subplot(3,2,1)

imshow(originalRGB);

title('QriginalImage');

h=fspecial('motion',50,45);%motionblurred

filteredRGB=imfilter(originalRGB,h);

subplot(3,2,2)

imshow(filteredRGB);

title('MotionBlurredImage');

boundaryReplicateRGB=imfilter(originalRGB,h,'replicate');

subplot(3,2,3)

imshow(boundaryReplicateRGB);

title('0-Padding');

boundary0RGB=imfilter(originalRGB,h,0);

subplot(3,2,4)

imshow(boundary0RGB);

title('Replicate');

boundarysymmetricRGB=imfilter(originalRGB,h,'symmetric');

subplot(3,2,5)

imshow(boundarysymmetricRGB);

title('Symmetric');

boundarycircularRGB=imfilter(originalRGB,h,'circular');

subplot(3,2,6)

imshow(boundarycircularRGB);

title('Circular');

 

4.运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像(提示:

利用fspecial函数的’average’类型生成均值滤波器)。

I=imread('kids.tif');

J=imnoise(I,'salt&pepper',0.05);

subplot(1,3,1)

imshow(J);

title('salt&pepperNoise');

h=fspecial('average');%AveragingFiltering

J1=imfilter(J,h);

fori=1:

10

J1=imfilter(J,h);

subplot(1,3,2)

imshow(J1);

title('10AveragingFiltering');

end

J2=imfilter(J,h);

fori=1:

20

J2=imfilter(J,h);

subplot(1,3,3)

imshow(J2);

title('20AveragingFiltering');

end

 

5.对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

I=imread('trees.tif');

J=imnoise(I,'salt&pepper',0.05);

subplot(1,3,1)

imshow(J);

title('OriginalImage');

h=fspecial('average');%AveragingFiltering

J1=imfilter(J,h);

subplot(1,3,2)

imshow(J1);

title('AveragingFiltering');

J2=medfilt2(J);%MedianFiltering

subplot(1,3,3)

imshow(J2);

title('MedianFiltering');

 

6.自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。

domain=[00800;

00800;

88888;

00800;

00800];

I=imread('trees.tif');

J=imnoise(I,'salt&pepper',0.05);

subplot(1,2,1)

imshow(J);

title('OriginalImage');

K1=ordfilt2(J,5,domain);

subplot(1,2,2)

imshow(K1);

title('5*5SmoothingFiteredImage');

 

附录:

可能用到的函数和参考结果**************报告里不能用参考结果中的图像

1)读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一图显示在同一图像窗口中。

I=imread('cameraman.tif');

subplot(1,3,1)

imshow(I);

title('QriginalImage');

J=imnoise(I,'salt&pepper',0.05);%noisedensity=0.05

subplot(1,3,2)

imshow(J);

title('salt&pepper');

K=imnoise(I,'gaussian',0.01,0.01);

subplot(1,3,3)

imshow(K);

title('gaussian');

图2.1初始图像及椒盐噪声图像、高斯噪声污染图

2)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。

I=imread('trees.tif');

H=fspecial('sobel');

subplot(2,2,1)

imshow(I);

title('QriginalImage');

Sobel=imfilter(I,H,'replicate');

subplot(2,2,2)

imshow(Sobel);

title('SobelImage')

H=fspecial('laplacian',0.4);

lap=imfilter(I,H,'replicate');

subplot(2,2,3)

imshow(lap);

title('LaplacianImage')

H=fspecial('gaussian',[33],0.5);

gaussian=imfilter(I,H,'replicate');

subplot(2,2,4)

imshow(gaussian);

title('GaussianImage')

图2.2原图像及各类低通滤波处理图像

3)使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。

originalRGB=imread('sedemo_onion.png');

subplot(3,2,1)

imshow(originalRGB);

title('OriginalImage');

h=fspecial('motion',50,45);%motionblurred

filteredRGB=imfilter(originalRGB,h);

subplot(3,2,2)

imshow(filteredRGB);

title('MotionBlurredImage');

boundaryReplicateRGB=imfilter(originalRGB,h,'replicate');

subplot(3,2,3)

imshow(boundaryReplicateRGB);

title('0-Padding');

boundary0RGB=imfilter(originalRGB,h,0);

subplot(3,2,4)

imshow(boundary0RGB);

title('Replicate');

boundarysymmetricRGB=imfilter(originalRGB,h,'symmetric');

subplot(3,2,5)

imshow(boundarysymmetricRGB);

title('Symmetric');

boundarycircularRGB=imfilter(originalRGB,h,'circular');

subplot(3,2,6)

imshow(boundarycircularRGB);

title('Circular');

图2.3原图像及运动模糊图像

图2.4函数imfilter各填充方式处理图像

4)运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像。

I=imread('kids.tif');

J=imnoise(I,'salt&pepper',0.05);

subplot(1,3,1)

imshow(J);

title('salt&pepperNoise');

h=fspecial('average');%AveragingFiltering

J1=imfilter(J,h);

fori=1:

10

J1=imfilter(J,h);

subplot(1,3,2)

imshow(J1);

title('10AveragingFiltering');

end

J2=imfilter(J,h);

fori=1:

20

J2=imfilter(J,h);

subplot(1,3,3)

imshow(J2);

title('20AveragingFiltering');

end

图2.5椒盐噪声污染图像经10次、20次均值滤波图像

由图2.5可得,20次滤波后的效果明显好于10次滤波,但模糊程度也更强。

5)对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果

I=imread('kids.tif');

J=imnoise(I,'salt&pepper',0.05);

subplot(1,3,1)

imshow(J);

title('OriginalImage');

h=fspecial('average');%AveragingFiltering

J1=imfilter(J,h);

subplot(1,3,2)

imshow(J1);

title('AveragingFiltering');

J2=medfilt2(J);%MedianFiltering

subplot(1,3,3)

imshow(J2);

title('MedianFiltering');

图2.6椒盐噪声污染图像及均值、中值滤波图像

从图2.6中可以看出,对于椒盐噪声污染的图像处理,中值滤波效果要明显好于均值滤波。

经均值滤波器处理后的图像比均值滤波器中结果图像更加模糊。

6)设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。

domain=[00800;

00800;

88888;

00800;

00800];

I=imread('kids.tif');

J=imnoise(I,'salt&pepper',0.05);

subplot(1,2,1)

imshow(J);

title('OriginalImage');

K1=ordfilt2(J,5,domain);

subplot(1,2,2)

imshow(K1);

title('5*5SmoothingFiteredImage');

 

图2.7椒盐噪声污染图像及5*5平滑滤波器掩模

掩模值为w=1/25*[11111;11111;11111;11111;11111]

图2.8椒盐噪声污染图像及5*5平滑滤波器掩模

掩模值为w=[00800;00800;88888;00800;00800]

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1