焦煤炉中英文对照外文翻译文献.docx

上传人:b****7 文档编号:23352357 上传时间:2023-05-16 格式:DOCX 页数:27 大小:1,020.57KB
下载 相关 举报
焦煤炉中英文对照外文翻译文献.docx_第1页
第1页 / 共27页
焦煤炉中英文对照外文翻译文献.docx_第2页
第2页 / 共27页
焦煤炉中英文对照外文翻译文献.docx_第3页
第3页 / 共27页
焦煤炉中英文对照外文翻译文献.docx_第4页
第4页 / 共27页
焦煤炉中英文对照外文翻译文献.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

焦煤炉中英文对照外文翻译文献.docx

《焦煤炉中英文对照外文翻译文献.docx》由会员分享,可在线阅读,更多相关《焦煤炉中英文对照外文翻译文献.docx(27页珍藏版)》请在冰豆网上搜索。

焦煤炉中英文对照外文翻译文献.docx

焦煤炉中英文对照外文翻译文献

中英文对照外文翻译文献

(文档含英文原文和中文翻译)

原文:

 

Energysavingandsomeenvironment

improvementsincoke-ovenplants

Abstract

Theenthalpyofinletcoalandfuelgasisdischargedfromacoke-ovenplantinthefollowingforms:

chemicalandthermalenthalpyofincandescentcoke,chemicalandthermalenthalpyofcoke-ovengas,thermalenthalpyofcombustionexhaustgas,andwasteheatfromthebodyofthecokeoven.Inrecentyearstherecoveryofseveralkindsofwasteenergyfromcokeovenshasbeenpromotedmainlyforenergysavingpurposes,butalsofortheimprovementofenvironmentalconditions.Amongthevariousdevicesyetrealized,thesubstitutionoftheconventionalwetquenchingmethodwithacokedrycoolingisthemosttechnicallyandeconomicallyconvenient.Theaimofthispaperismainlyareviewofthemaintypesofcokedrycoolingplantsandadetailedexaminationoftheinfiuenceofsomeparameters,particularlyoftemperatureandpressureoftheproducedsteam,andontheenergyefficiencyoftheseplants.

1.Introduction

1.1.Usableenergy

Theenergyofasystem-environmentcombinationisusuallydefinedastheamountofworkattainablewhenthesystemisbroughttoastateofunrestrictedequilibrium(thermal,mechanicalandchemical)bymeansofreversibleprocesses,involvingonlytheenvironmentatauniformlyconstanttemperatureandpressureandcomprisingsubstancesthatareinthermodynamicequilibrium.Notwithstandingthequitedifferentmeaning,chemicalenergiesdifferfromlowerheating

valuesslightly,asisdiscussedin[1,2].Thechemicalenergygenerallyfallsbetweenthehigherandlowerheatingvaluesbutisclosertothehigher.

Nomenclature

cp

constantpressureheatcapacity[kJ/(kgK)]

Ex

energy[kJ]

Exu

usableenergy[kJ]

ex

specificenergy[kJ/kg]

Gv

volumeflowrate[m3(nTp)/h]

Gv*

specificvolumeflowrate[m3(nTp)/tdrycoke]

i

specificenthalpy[kJ/kg]

p

pressure[bar]

s

specificentropy[kJ/(kgK]

T

temperature[︒C,K]

To

environmenttemperature[︒C,K]

v

specificvolume[m3/kg]

Ф

energyeffciency[dimensionless]

Nonetheless,thechemicalenergyisnotsuitableforquantifyingthetechnicalvalueofafuelfortworeasons:

(i)Priortoconsideringheattransfer,itisnecessarytoaccountfortheessentiallyirreversiblecombustionprocess,whichdecreasestheexergiesofvariousfuelsgreatlyindifferentways.(ii)Theworkcorrespondingtoreversibleexpansionofseveralcomponents(inparticularCO2)downtotheiratmosphericpartialpressurescannotbeobtainedfromthecombustiongas,asisimplicitintheenergyde®nition.Inaddition,thisworkdifferswithfueltype.Consequently,Bisio[3]definedusableenergyastheexergeticvaluefollowinganadiabaticcombustionwithagivenexcessairratio(e.g.,1.1)minustheenergylossresultingfromirreversiblemixingofcom-bustiongaswiththeatmosphereafterhavingreachedatmosphericpressureandtemperature.

Theratioofusableenergytolowerheatingvalueofagivenfuelistermedthemeritfactor.Thisfactorisalwayslessthanoneandincreasesasthetechnicalandeconomicvaluesofafuelrise.

Theparameter“usableexergy”,ashasbeende®nedandappliedin[3],issuitableintheexamin-ationofplants,thatutilizefuelmixing,whentheaimistoreduceboththetotalfuelconsumptionand,chiefly,themorevaluablecomponentone.

1.2.Coke-ovenenergyrecoveries

Thechemicalenergyofafuelgas,whichisusedforacokeoven,amountsto2500-3200MJ/tdrycoal.Thisenergy,degradedtothermalenergyofvariousoperativevalues,isdischargedfromtheplantinsuchforms:

1.Thermalenergyofincandescentcoke(43-48%)

2.Thermalenthalpyofcoke-ovengas(24-30%)

3.Thermalenergyofwastegas(10-18%)

4.Permeability,convectionandradiationheatfromtheexternalsurfaceofcokeoven,andvariouslosses(10-17%)

Theoilcrisisof1973createdastrongimpulsetowardsanewthinkingontheconsumptionandrationalutilizationofenergy,particularlyinthehighlyindustrializedcountrieswithlimitedindigenousenergyresources.Atthesametime,attentionthroughouttheworldwasalsoincreas-inglyfocusedonenvironmentproblems.

Thepossibleutilizationofthethermalenergyofincandescentcokeisdealtwithinmanypapers.Usually,incokingtechnologythecokeiscooledbybeingsprayedwithwaterunderspecialquenchingtowers.Inrecentyears,thevarioustypesofdrycoolingplantsallowtherecov-eryofnearly80%ofthethermalenergyofincandescentcoke.Thepossibilitiesofutilizingreco-veredenergyareasfollows:

1.Productionofsteamandelectricity.

2.Preheatingofcokingcoal.

3.Roomheating.

Thethermalenergyofcoke-ovengas,whichisthesecondlargestintheabovelisting,hassofarbeenrarelyutilized.Variousstudies,however,havebeencarriedoutforthepossibleutilizationofthiswasteenergyandatechniquehasrecentlybeencommercializedinJapan.

Thethermalenergyofcombustionexhaustgasisutilizedtopreheatboththecombustionairandfuelgasmixturethroughalarge-capacityregenerator.Consequentlythewastegastemperatureisreducedtoapproximately200︒C.Lately,thefurtherrecoveryofheatfromwastegashasbeenreportedinafewcasesusingaheatpipeinstalledinthe¯ue.

Thevariouskindsofheatwastedfromthecoke-ovenexternalsurfacehavebeendecreasedbythereinforcedsealingandbetterthermalinsulationofcokeovens.

Inthefollowingsections,themaintypesofcoke-ovenenergyrecoverieswillbeconsideredforacomparison.

1.3.Protectionoftheenvironment

Aswiththeproblemofenergysavingandrecovery,thelastyearshavebeencharacterizedbyincreasedpreventionofatmosphericandwaterpollutionbyindustrialemissionsanddomesticwastes.Worktocontrolatmosphericpollutionhasbeencarriedoutinalldevelopedcountries.AccordingtoZaichenkoetal.,asaresultofincludingmeasuresforenvironmentalprotection,theinvestmentandthecokingcostsareincreasedby15%.However,ifthecalculationsincludedallowanceforlossescausedbyadverseeffectsofatmosphericpollutiononworkershealth,instal-lationofengineeringfacilitiesformaintainingcleanaircanbecost-effective.Inanycase,itisobviousthatanenvironmentalfacilityisparticularlytemptingwhen,aswithcokedrycoolingplants,inadditiontoenvironmentadvantages,anenergyrecoverycanbeassociated,eveniftheinvestmentcostsarehigherandnotjusti®edonlybyenergysaving.

2.Cokedryquenching

2.1.Methodsforenergyrecoveryandsavingfromcokeatthecoke-ovenoutlet

Theideaofrecoveringthermalenergyfromincandescentcokebymeansofaninertgasdatesbacktotheearly1900s.The®rstindustrialplants,designedparticularlybytheSulzerBrothers(Winterthur,Switzerland)werecarriedoutinthe'20sand'30sbothintheUSAandinEurope(Germany,France,UK,Switzerland)[4,18].However,thegreaterinvestmentcostsofdryquench-ingplants,incomparisonwiththoseofthewetquenchingones,wereamortizedwithdif®cultyinaperiodinwhichenergywasverycheap.Consequently,dryquenchingplantsweregivenup.

Intheearly1960s,anewinterestarose:

intheUSSR,drycoolingplants,whichbasicallyfollowedtheSulzerdesign,werebuiltwiththeprimaryaimofpreventingthecokefromfreezinginwinter,ashappenswithwetquenchedcoke.Theplant,constructedinvariouscountriesaccord-ingtotheSovietGiprokoksprocess[6],isschematicallyshowninFig.1.Thered-hotcoke,atatemperatureofabout1100︒C,ispushedfromovens,A,intocontainersplacedoncars.Loadedcarsaremovedtothedrycoolingplant,wherecontainers,B,areliftedbybridgecrane,C,andunloadedthroughthechargingsystem,D,intopre-chamber,E.Then,

 

hotcokeistransferredintothecoolingchamber,F,insmallbatches.Afterleavingthecoolingchamberthroughthedischarg-ingsystem,G,cokeruns,atatemperatureofabout200︒C,ontoconveyorbelt,H.Cokeisrefriger-atedbyacirculatinggas,composedmainlybynitrogenandmovedbythemainblower,I.Thisgastransfersthermalenergyinboiler,N,whichproducessuperheatedsteam,O,atapressureupto100bar.Beforeenteringtheboiler,thegasisscrubbedinthecoarsede-duster,J,removingcoarseparticlesofcokedusttoprotecttheboilersurfacefromerosion.Afterleavingtheboiler,thegasstreamsthroughthe®nededuster,K,where®nedustisscrubbedout.

 

In1983adrycoolingplant,schematicallyshowninFig.2,beganoperationinGermany.Itsmaincharacteristicisthat1/3ofthethermalenergyistransferreddirectlyfromthecoketothevaporizingwaterandtheremaining2/3throughtheinertgas.Theadvantagesarealowerquantityofcirculatinggaswithacorrespondinglylowerconsumptionofelectricalenergybytheblowerandagreaterenergyrecovery.Refrigeratingwallsinthecoolingchamberrepresentthecriticalpointoftheplanti.

InGermany,acombinationofthecokedrycoolingandcoalpreheatingplanthasbeendeveloped[5,9,14±16].Thissystemrealizesprimaryenergysaving(e.g.gas)insteadofenergyrecoveryoflowerenergyvalue(steam)andthusitisthermodynamicallypreferred(see,e.g.,[29]).Inaddition,thewell-knownadvantagesofthesingleprocesseswithrespecttocokequalityandincreasedoutputhavebeencon®rmed.Thecompletelyclosedsystempermitssignificantenvironmentalimprovementsinthecokingplantsector,avoidingtheimmissionsofdustintotheatmosphereinapracticallycompleteway.

 

 

Jung[13]consideredtheconvenienceofusingwatergas(H2+CO)astheheattransferfluid.Indeed,watergashasathermaldiffusivitythreetimesthatofnitrogen,andthusitallowsustoreduce

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1