基于IGBT的直流斩波电机调速系统控制.docx

上传人:b****1 文档编号:23282120 上传时间:2023-05-15 格式:DOCX 页数:29 大小:324.98KB
下载 相关 举报
基于IGBT的直流斩波电机调速系统控制.docx_第1页
第1页 / 共29页
基于IGBT的直流斩波电机调速系统控制.docx_第2页
第2页 / 共29页
基于IGBT的直流斩波电机调速系统控制.docx_第3页
第3页 / 共29页
基于IGBT的直流斩波电机调速系统控制.docx_第4页
第4页 / 共29页
基于IGBT的直流斩波电机调速系统控制.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

基于IGBT的直流斩波电机调速系统控制.docx

《基于IGBT的直流斩波电机调速系统控制.docx》由会员分享,可在线阅读,更多相关《基于IGBT的直流斩波电机调速系统控制.docx(29页珍藏版)》请在冰豆网上搜索。

基于IGBT的直流斩波电机调速系统控制.docx

基于IGBT的直流斩波电机调速系统控制

 

基于IGBT的直流斩波

牵引电机调速控制电路

 

学院:

电气学院

专业:

电气工程及其自动化(轨道交通方向)

班级:

BG1102

姓名:

鲁春娇

学号:

111001180204

指导教师:

王致杰

设计时间:

2014.12

 

 

小组成员及分工:

组长:

张亚强

文献检索:

鲁春娇,戚诚凯

文档编辑:

王智超,张诩

 

目录

前言4

第一章轨道车辆牵引领域电力电子器件的发展6

1.1电力电子器件的发展6

1.2电气牵引控制技术的发展6

1.3控制技术6

第二章轨道车辆牵引领域电力电子器件的应用8

2.1电力电子器件在轨道车辆牵引中的应用发展8

2.2IGBT在轨道车辆牵引变流器的应用8

2.2.1IGBT简介8

第三章直流斩波电路11

第四章直流调速系统12

4.1直流调速系统结构12

4.2直流调速系统原理13

4.3调速方案选择13

第五章设计直流斩波调速电路15

5.1信号发生电路15

5.2IGBT的驱动电路18

5.3主电路19

5.4总电路图22

第六章电路调试23

6.1信号发生电路的调试23

6.2驱动电路的调试23

6.3完整电路调试23

第七章结论24

个人心得25

参考文献26

 

前言

长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。

特别随着计算机在控制领域和高开关频率、全控型第二代电力半导体器件的发展,以及直流斩波调速技术的应用,直流电机得到广泛应用。

目前,市场上用的最多的IGBT直流斩波器,它是属于全控型斩波器,它的主导器件采用国际上先进的电力电子器件IGBT,由门极电压控制,从根本上克服了晶闸管斩波器及GTR 斩波器的缺点。

基于IGBT的直流斩波控制实现应用也是十分广泛的直流电机的调速,与可控硅脉冲调速方式和电阻调速方式相比,具有明显的优点。

电力牵引传动与电力电子器件存在相互促进和相互依存的密切关系,电力传动是按照直一直传动、交一直传动再到交一直一交传动的过程发展的,而为了满足这一发展历程,离不开电力电子器件和现代计算机控制技术的高速发展。

现代电力电子器件的发展迅猛,开发周期愈来愈短,如快速晶闸管、GTO晶闸管、IGBT、IPM等,每种新器件的诞生都迫使我们加快了对新器件的基础应用研究,从而促进了牵引传动方式的进步。

电力牵引传动与电力电子器件存在相互促进和相互依存的密切关系,电力传动是按照直一直传动、交一直传动再到交一直一交传动的过程发展的,而为了满足这一发展历程,离不开电力电子器件和现代计算机控制技术的高速发展。

现代电力电子器件的发展迅猛,开发周期愈来愈短,如快速晶闸管、GTO晶闸管、IGBT、IPM等,每种新器件的诞生都迫使我们加快了对新器件的基础应用研究,从而促进了牵引传动方式的进步。

电力牵引是我国最主要的轨道交通车辆的牵引方式。

我国轨道交通车辆发展迅猛,从以往单一的铁路形式发展成为包括高速铁路、城际客运专线、城市地铁和轻轨以及磁悬浮列车等在内的多种形式,通过轨道交通车辆出行已经成为人们最重要的交通方式。

随着轨道交通车辆的发展,电力牵引技术也得到了极大的提高和发展。

目前电力牵引系统已经发展到了交直交的交流传动系统,并得到了空前的应用。

微机、网络、FPGA和智能控制等先进技术都在电力牵引系统中获得了广泛的运用,新型的电力牵引和控制系统在不断涌现。

电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。

无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。

据资料显示,在所有动力资源中,百分之九十以上来自电动机。

同样,我国生产的电能中有百分之六十是用于电动机的。

电动机与人的生活息息相关,密不可分。

电气时代,电动机的调速控制一般采用模拟法,对电动机的简单控制应用比较多。

简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。

这类控制可通过继电器,可编程控制器和开关元件来实现。

直流电动机在电力拖动系统中具有两个突出优点。

首先直流电动机具有良好的启动、制动性能、调速性能和控制性能,这个优点使直流电动机运动控制系统(简称直流调速系统)在需要调速的高性能电力拖动中得到广泛的应用。

另外,它的电枢电压、电枢电力、电枢回路电阻、电机输出转矩、电机转速等各参数、变量之间的关系几乎都是近似的线性函数关系,这使直流电动机的数学模型较为简单、准确、相应地使得直流调速控制系统的分析、计算及设计也较为容易,且经过较长时间的实践,直流拖动控制系统在理论和实践上都比较成熟、经典,而且从反馈闭环控制的角度来看,它又是及交流调速控制系统的基础。

 

第一章轨道车辆牵引领域电力电子器件的发展

1.1电力电子器件的发展

自1957年晶闸管问世,标志着电力电子技术的诞生,从此电子技术向两个分支发展。

一支是以晶体管集成电路为核心形成对信息处理的微电子技术,其发展特点是集成度愈来愈高,集成规模越来越大,功能越来越全。

另一支是以晶闸管为核心形成对电力处理的电力电子技术,其发展特点是晶闸管的派生器件越来越多,功率越来越大,性能越来越好。

传统的电力电子器件已发展到相当成熟的阶段,但在实际中却存在两个制约其继续发展的致命因素。

一是控制功能上的欠缺,因为通过门极只能控制其开通而不能控制其关断,属于半控型器件。

二是此类器件立足于分立元件结构,开通损耗大,工作频率难以提高,一般情况下难以高于400Hz,因而大大地限制了其应用范围。

因此,半控制器件的发展已处于停滞状态。

到了70年代末,可关断晶闸管(GTO)器件日趋成熟,标志着电力电子器件已经从半控型器件发展到全控制型器件。

进入80年代以后,伴随着GTO器件的发展及成熟,MOS器件的开发则繁花似锦。

绝缘栅双极晶体管(IGBT)独占鳌头。

至此电力电子器件又从电流控制型器件发展到电压控制型器件。

90年代,电力电子器件又在向智能化、模块化方向发展,力求将电力器件与驱动电路、保护电路、检测电路等集成在一个芯片或模块内,使装置更趋小型化、智能化,其典型器件是IPM。

而IGCT器件既具有IGBT器件的开关特性,同时又具有GTO器件的导通特性,且制造成本较低(与GTO和IGBT相比),可以获得和GTO晶闸管一样的产量,即其集IGBT与GTO二者优势于一身,预计今后会在更多的工业和牵引领域中发挥作用。

总之,电力电子器件的发展经历了从半控到全控、从电流控制型到电压控制型、从单个元件到模块化再到智能化的发展过程。

1.2电气牵引控制技术的发展

1.2.1牵引/制动特性

轨道运输装备的牵引/制动特性是其最基本、最重要的性能,是运输装备设计首要考虑的重要因素之一,它包括了运输装备的持续运行速度、最高运行速度、牵引/制动力特性以及装备的加速性能,以满足铁路运输的需求。

在轨道运输装备减速制动时通常优先采用再生制动,将电机回馈的电能通过变流装置回馈给电网,达到绿色环保节能的目的。

在系统研究与实际工程应用中,采用高功率密度变流装置、变压器、牵引电机和直接转矩控制等先进电机控制策略,在实现对电机的牵引/制动特性准确控制的同时,获得毫秒级的转矩阶跃动态响应性能。

电气牵引传动粗分为以下几种方式:

1)直流电网供电——直流电动机传动,即直——直传动。

2)直流供电——交流异步传动,即直——交传动。

3)单相交流供电——直流(脉流)电动机传动,即交——直传动。

4)单相交流供电——三相交流异步电动机传动,即交——交传动。

1.3控制技术

1.3.1PWM控制技术

脉冲宽度调制技术(PWM)是现代变流技术广泛应用的起点,是奠定绿色变频节能的基础。

其通过改变输出脉冲的占空比来实现等效的输出电压与频率,从而实现交流到直流,直流到交流的能量变换。

通常采用的空间矢量脉宽调制(SVPWM)技术在三相对称正弦波电压供电时,以合成旋转的空间电压矢量为参考,三相逆变器8种不同开关模式电压矢量合成参考电压矢量,形成PWM波。

1.3.2传动控制技术

传动控制技术是牵引传动系统的核心技术,传动控制技术已经由转差电流控制发展成矢量控制和直接转矩控制等。

1)转差电流控制技术

转差电流控制技术是一种早期的用于控制交流异步电机的方法,基于异步电动机的稳态数学模型,控制性能远不能与直流调速系统相媲美,系统的动态性能差。

2)矢量控制技术

矢量控制,又称为磁场定向控制(FOC),其基本原理是将异步电动机的定子电流正交分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量的幅值,从而达到控制异步电动机转矩的目的。

矢量控制策略存在一些固有缺点,比如转子磁链难以准确观测,对电机参数比较敏感,实际工程应用时矢量控制必须具备异步电动机参数自动辨识功能。

与直接转矩控制相比,矢量控制具有直接的电流闭环控制特点,电流控制的稳定性高,有独立的PWM调制单元,决定其转矩控制结果是一个开关周期内的平均值。

如果在大功率低开关频率应用时,高速区必须采用同步调制技术。

同步调制技术与直接转矩控制相比,开关频率利用不充分,在逆变器峰值电流、电机谐波损耗、转矩脉动、直流侧电流谐波等重要性能指标上比直接转矩控制差。

而直接转矩控制PWM调制在磁链和转矩控制中直接实现,转矩动态性能高,但在低速高开关频率区性能比矢量控制差。

通常在小功率高开关频率场合应用矢量控制,在大功率低开关频率场合应用直接转矩控制。

3)直接转矩控制技术

直接转矩控制技术是继矢量控制技术之后发展起来的一种高性能异步电动机变频调速技术。

与矢量控制不同,直接转矩控制通过直接控制转矩和磁链来间接控制电流,不需要复杂的坐标变换,因此具有控制结构简单、转矩响应快以及对参数鲁棒性好等优点,它在很大程度上解决了矢量控制中结构复杂、计算量大、对参数变化敏感等问题。

直接转矩控制可以充分利用逆变器的开关频率,从而特别适用于大功率牵引传动领域。

 

第二章轨道车辆牵引领域电力电子器件的应用

2.1电力电子器件在轨道车辆牵引中的应用发展

80年代以前,在轨道车辆牵引领域,电力电子器件主要用于直流传动系统中的整流器和斩波器以及辅助传动系统。

电力电子器件主要是晶闸管。

进入80年代以后,随着交流传动技术日趋成熟,电力电子器件又有了新的用武之地,其在牵引领域的应用主要包括:

整流器、斩波器、电力制动、逆变器以及辅助传动系统。

这一时期在这些应用领域采用的电力电子器件主要是晶闸管和GTO。

进入90年代以后,交流传动在电力机车、内燃机车及动车组上得以大量地推广应用,使电力电子器件在轨道车辆牵引领域中有了更广阔的应用前景。

这一时期其在牵引领域的应用主要是牵引变流器,主要采用的电力电子器件是GTO和IGBT。

根据电力电子器件的发展现状及趋势,预计在今后几年,电力电子器件将在以下方面取得进展:

(1)已进入实用化的全控型器件将在功率等级、易于驱动和更高工作频率这三个方面继续改善和提高。

(2)由于MCT、IGBT、IGCT等器件的大容量化及实用化,在更多的领域,IGBT和IGCT将取代GTO。

(3)IGCT等新型混合器件将逐步得以推广应用。

(4)功率集成电路将会有更进一步的发展。

这将预示着电力电子技术将跃入一个新的时代。

(5)新型半导体材料SiC的问世,将预示着在不远的将来会诞生一种集高耐压、大电流、高开关速度、无吸收电路、简单的门极驱动、低损耗等所有优点于一身的新型SiC电力器件。

2.2IGBT在轨道车辆牵引变流器的应用

2.2.1IGBT简介

IGBT,绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。

GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。

IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。

非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。

2.2.2IGBT工作特性

IGBT的导通:

IGBT硅片的结构与功率MOSFET的结构十分相似,主要差异是IGBT增加了P+基片和一个N+缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。

如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。

基片的应用在管体的P+和N+区之间创建了一个J1结。

当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。

如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。

最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:

一个电子流(MOSFET电流);一个空穴电流(双极)。

IGBT的关断:

当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。

在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。

这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。

少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:

功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。

静态特性:

IGBT的静态特性主要有伏安特性、转移特性和开关特性。

IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。

输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。

它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。

在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。

如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。

IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。

它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。

在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。

最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。

IGBT的开关特性是指漏极电流与漏源电压之间的关系。

IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。

尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。

此时,通态电压Uds(on)可用下式表示:

Uds(on)=Uj1+Udr+IdRoh

式中Uj1——JI结的正向电压,其值为0.7~1V;Udr——扩展电阻Rdr上的压降;Roh——沟道电阻。

通态电流Ids可用下式表示:

Ids=(1+Bpnp)Imos

式中Imos——流过MOSFET的电流。

由于N+区存在电导调制效应,所以IGBT的通态压降小,耐压1000V的IGBT通态压降为2~3V。

IGBT处于断态时,只有很小的泄漏电流存在。

动态特性

IGBT在开通过程中,大部分时间是作为MOSFET来运行的,只是在漏源电压Uds下降过程后期,PNP晶体管由放大区至饱和,又增加了一段延迟时间。

td(on)为开通延迟时间,tri为电流上升时间。

实际应用中常给出的漏极电流开通时间ton即为td(on)tri之和,漏源电压的下降时间由tfe1和tfe2组成。

IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。

当选择这些驱动电路时,必须基于以下的参数来进行:

器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。

因为IGBT栅极-发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。

IGBT在关断过程中,漏极电流的波形变为两段。

因为MOSFET关断后,PNP晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间,td(off)为关断延迟时间,trv为电压Uds(f)的上升时间。

实际应用中常常给出的漏极电流的下降时间Tf由图中的t(f1)和t(f2)两段组成,而漏极电流的关断时间

t(off)=td(off)+trv十t(f)

式中:

td(off)与trv之和又称为存储时间。

IGBT的开关速度低于MOSFET,但明显高于GTR。

IGBT在关断时不需要负栅压来减少关断时间,但关断时间随栅极和发射极并联电阻的增加而增加。

IGBT的开启电压约3~4V,和MOSFET相当。

IGBT导通时的饱和压降比MOSFET低而和GTR接近,饱和压降随栅极电压的增加而降低。

正式商用的IGBT器件的电压和电流容量还很有限,远远不能满足电力电子应用技术发展的需求;高压领域的许多应用中,要求器件的电压等级达到10KV以上,目前只能通过IGBT高压串联等技术来实现高压应用。

国外的一些厂家如瑞士ABB公司采用软穿通原则研制出了8KV的IGBT器件,德国的EUPEC生产的6500V/600A高压大功率IGBT器件已经获得实际应用,日本东芝也已涉足该领域。

与此同时,各大半导体生产厂商不断开发IGBT的高耐压、大电流、高速、低饱和压降、高可靠性、低成本技术,主要采用1um以下制作工艺,研制开发取得一些新进展。

2013年9月12日我国自主研发的高压大功率3300V/50AIGBT(绝缘栅双极型晶体管)芯片及由此芯片封装的大功率1200A/3300VIGBT模块通过专家鉴定,中国自此有了完全自主的IGBT“中国芯”。

由于IGBT器件属电压驱动的全控型开关器件,脉冲开关频率高,性能好,损耗小,且自保护能力也强。

为此,目前世界上无论是干线铁路还是城市轨道的电动车辆的电气系统中均采用IGBT模块来构成。

随着IGBT性能的迅速发展,IGBT模块的电压等级和电流容量在不断提高,从1991年生产出了小型IGBT模块,其电压等级为1200V/300A,很快取代了在工业上通用变频器中所用的双极型晶体管;1993年出现了1700V/300A的IGBT,并已开始在城市电车上获得推广应用;到2000年后更出现了1700V/2400A,3300V/1200A和6500V/600A的高压IGBT,这些高压HVIGBT很快地应用到铁道与城市地铁轻轨车辆中,由于其性能优越,加之其为绝缘型模块,整机的结构设计紧凑轻巧,且采用了低感母线技术与软门极的驱动技术并解决了热循环的寿命问题,目前,HVIGBT模块已成为轨道电力牵引系统中应用的主导元件。

随着城市发展,城轨交通供电网压制也从早期的600VDC和750VDC发展为1500VDC网压制,以适应大城市大客流量发展的需要。

网压的提高对电力电子器件的电压等级提出了更高的要求,IGBT模块的电压等级也从1200V发展到L700V,3300V以及4500V和6500V电压等级水平。

 

第三章直流斩波电路

直流斩波电路是一种将电压恒定的直流电变换为电压可调的直流电的电力电子变流装置,亦称直流斩波器或DC/DC变换器。

用斩波器实现直流变换的基本思想是通过对电力电子开关器件的快速通、断控制把恒定的直流电压或电流斩切成一系列的脉冲电压或电流,在一定滤波的条件下,在负载上可以获得平均值可小于或大于电源的电压或电流。

如果改变开关器件通、断的动作频率,或改变开关器件通、断的时间比例,就可以改变这一脉冲序列的脉冲宽度,以实现输出电压、电流平均值的调节。

早在1940年德国人采用机械开关通断的思想来调节直流电压以控制直流电动机的转速,1960年美国人把晶体管斩波器用于控制柴油发电机的励磁系统,1963年德国人把晶闸管斩波器用于控制蓄电池车。

早期主要应用于城市电车,地铁、电动汽车等直流牵引调速控制系统中。

随着自关断电力电子开关器件和脉宽调制技术的不断发展,直流斩波器具有效率高、体积小、重量轻、成本低等显著优点,广泛应用于开关电源、有源功率因数校正、超导储能等新技术领域。

一般来说,直流斩波电路有两类不同的应用领域:

一类负载是要求输出电压可在一定范围内调节控制,即要求电路输出可变的直流电压,例如直流电动机负载,为了改变其转速,要求可变的直流电压供电;另一类负载则要求无论在电源电压变化或负载变化时,电路的输出电压都能维持恒定不变,即输出一个恒定的直流电压,如开关电源等。

这两种不同的要求均可通过一定类型的控制系统根据反馈控制原理实现。

直流斩波电路的种类较多,根据其电路结构及功能分类,主要有以下4种:

降压(Buck)斩波电路、升压(Boost)斩波电路、升降压(Buck-Boost)斩波电路、丘克(Cuk)斩波电路,其中前两种是最基本的电路,后两种是前两种基本电路的组合形式。

由基本斩波电路衍生出来的Sepic斩波电路和Zeta斩波电路也是较为典型的电路。

利用基本斩波电路进行组合,还可以构成复合斩波电路和多相多重斩波电路。

 

第四章直流调速系统

4.1直流调速系统结构

直流电机由定子和转子两部分组成,其间有一定的气隙。

其构造的主要特点是具有一个带换向器的电枢。

直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。

其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。

直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。

其中电枢由电枢铁心和电枢绕组两部分组成。

电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。

换向器是一种机械整流部件。

由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。

各换向片间互相绝缘。

换向器质量对运行可靠性有很大影响。

直流电机斩波调速原理是利用可控硅整流调压来达直流电机调速的目的,利用交流电相位延迟一定时间发出触发信号使可控硅导通即为斩波,斩波后的交流电经电机滤波后其平均电压随斩波相位变化而变化。

为了达到控制直流电机目的,在控制回路加入了速度、电压、电流反馈环路和PID调节器来防止电机由于负载变化而引起的波动和对电机速度、电压、电流超常保护。

直流励磁的磁路在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。

在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。

此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。

直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。

在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。

虽然直流发电机和直流电动机的用途各不同,但是它们的结构基本上一样,都是利用电和磁的相互作用来实现机械能与电能的相互转换。

直流电机的最大弱点就是有电流的换向问题,消耗有色金属较多,成本高,运行中的维护检修也比较麻烦。

因此,电机制造业中正在努力改善交流电动机的调

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 金融投资

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1