原子吸收分光光度法基本原理.docx

上传人:b****2 文档编号:2326581 上传时间:2022-10-28 格式:DOCX 页数:14 大小:81.74KB
下载 相关 举报
原子吸收分光光度法基本原理.docx_第1页
第1页 / 共14页
原子吸收分光光度法基本原理.docx_第2页
第2页 / 共14页
原子吸收分光光度法基本原理.docx_第3页
第3页 / 共14页
原子吸收分光光度法基本原理.docx_第4页
第4页 / 共14页
原子吸收分光光度法基本原理.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

原子吸收分光光度法基本原理.docx

《原子吸收分光光度法基本原理.docx》由会员分享,可在线阅读,更多相关《原子吸收分光光度法基本原理.docx(14页珍藏版)》请在冰豆网上搜索。

原子吸收分光光度法基本原理.docx

原子吸收分光光度法基本原理

原子吸收分光光度法基本原理  

一.原子吸收光谱的产生及共振线

   在一般情况下,原子处于能量最低状态(最稳定态),称为基态(E0=0)。

当原子吸收外界能量被激发时,其最外层电子可能跃迁到较高的不同能级上,原子的这种运动状态称为激发态。

处于激发态的电子很不稳定,一般在极短的时间(10-8-10-7s)便跃回基态(或较低的激发态),此时,原子以电磁波的形式放出能量:

                           

(1)

图1 原子光谱的发射和吸收示意图

共振发射线:

原子外层电子由第一激发态直接跃迁至基态所辐射的谱线称为共振发射线;

共振吸收线:

原子外层电子从基态跃迁至第一激发态所吸收的一定波长的谱线称为共振吸收线;

 共  振  线:

共振发射线和共振吸收线都简称为共振线。

   由于第一激发态与基态之间跃迁所需能量最低,最容易发生,大多数元素吸收也最强;

   因为不同元素的原子结构和外层电子排布各不相同,所以“共振线”也就不同,

各有特征,又称“特征谱线”,选作“分析线”。

二.原子吸收值与原子浓度的关系

(一)   吸收线轮廓及变宽

 

 

图2 基态原子对光的吸收

若将一束不同频率,强度为I0的平行光通

过厚度为1cm的原子蒸气时,一部分光被吸收,

    

(2)          

透射光的强度Iν仍服从朗伯-比尔定律:

式中:

Kν——基态原子对频率为的光的吸收系数,它是光源辐射频率的ν函数

   由于外界条件及本身的影响,造成对原子吸收的微扰,使其吸收不可能仅仅对应于一条细线,即原子吸收线并不是一条严格的几何线(单色λ),而是具有一定的宽度、轮廓,即透射光的强度表现为一个相似于下图的频率分布:

图3 Iν与ν的关系

       若用原子吸收系数Kν随ν变化的关系作图得到吸收系数轮廓图:

图4 原子吸收线的轮廓图

  ①K0:

峰值吸收系数或中心吸收系数(最大吸收系数);

  ②ν0:

中心频率,最大吸收系数K0所对应的波长;

  ③∆ν:

吸收线的半宽度,K0/2 处吸收线上两点间的距离;

④:

积分吸收,吸收线下的总面积。

引起谱线变宽的主要因素有:

1.自然宽度:

在无外界条件影响下的谱线宽度谓之

    根据量子力学的Heisenberg测不准原理,能级的能量有不确定量∆E,可由下式估算:

 

τ—激发态原子的寿命,当τ为有限值时,则能级能量的不确定量∆E为有限值,此能级不是一条直线,而是一个“带”。

τ越小,宽度越宽。

    但对共振线而言,其宽度一般<10-5nm,可忽略不计。

 2.多普勒(Doppler)宽度:

由于原子无规则运动而引起的变宽

     当火焰中基态原子向光源方向运动时,由于Doppler效应而使光源辐射的波长ν0增大(λ0变短),基态原子将吸收较长的波长;反之亦反。

因此,原子的无规则运动就使该吸收谱线变宽。

当处于热力学平衡时,Doppler变宽可用下式表示:

         (3)

即 ∆νD与T的平方根成正比,与相对分子量A的平方根成反比。

对多数谱线:

∆νD:

10-3~10-4nm

      ∆νD比自然变宽大1~2个数量级,是谱线变宽的主要原因。

3.劳伦兹(Lorentz)变宽:

原子与其它外来粒子(如气体分子、原子、离子)间的相互作用(如碰撞)引起的变宽。

               (5)

式中:

P—气体压力,M—气体相对分子量;N0—阿伏加德罗常数;

σ2—为原子和分子间碰撞的有效截面。

劳伦兹宽度与多普勒宽度有相近的数量级,大约为10-3~10-4nm。

   实验结果表明:

对于温度在1000~3000K,常压下,吸收线的轮廓主要受Doppler和Lorentz变宽影响,两者具有相同的数量级,约为0.001-0.005nm。

   采用火焰原子化装置时,∆νL是主要的;

   采用无火焰原子化装置时,∆νD是主要的。

(二)吸收值的测量——峰值吸收系数K0与积分吸收

积分吸收就是将原子吸收线轮廓所包含的吸收系数进行积分(即吸收曲线下的总面积)。

根据经典的爱因斯坦理论,积分吸收与基态原子数的关系为:

                      (6)

式中:

e—电子电荷;m—电子质量;c—光速;

N0—单位体积原子蒸气中能够吸收波长λ+∆λ范围辐射光的基态原子数;

     f—振子强度(每个原子中能够吸收或发射特定频率光的平均电子数,f与能级间跃迁概率有关,反映吸收谱线的强度)

在一定条件下,为常数,则:

 

即 积分吸收与单位体积原子蒸气中能够吸收辐射的基态原子数成正比,这是原子

吸收光谱分析的理论依据。

   若能测得积分吸收值,则可求得待测元素的浓度。

   但①要测量出半宽度∆ν只有0.001~0.005nm的原子吸收线轮廓的积分值(吸收值),所需单色器的分辨率高达50万的光谱仪,这实际上是很难达到的。

     ②若采用连续光源时,把半宽度如此窄的原子吸收轮廓叠加在半宽度很宽的光源发射线上,实际被吸收的能量相对于发射线的总能量来说及其微小,在这种条件下要准确记录信噪比十分困难。

       

   1955年,澳大利亚物理学家A.Walsh提出以锐线光源为激发光源,用测量峰值吸收系数(K0)的方法代替吸收系数积分值的方法成功地解决了这一吸收测量的难题。

   锐线光源——发射线的半宽度比吸收线的半宽度窄的多的光源

   且当其发射线中心频率或波长与吸收线中心频率或波长相一致时,可以认为在发射线半宽度的范围内Kν为常数,并等于中心频率∆ν处的吸收系数K0(峰值吸收K0可准确测得)。

   理想的锐线光源——空心阴极灯:

用一个与待测元素相同的纯金属制成。

   由于灯内是低电压,压力变宽基本消除;灯电流仅几毫安,温度很低,热变宽也很小。

在确定的实验条件下,用空心阴极灯进行峰值吸收K0测量时,也遵守Lamber-Beer定律:

              (7)

  峰值吸收系数K0与谱线宽度有关,若仅考虑多普勒宽度∆νD:

               (8)

   峰值吸收系数K0与单位体积原子蒸气中待测元素的基态原子数N0成正比。

        (9)

在一定条件下,上式中括号内的参数为定值,则

                   A=K’N0                               (10)

此式表明:

在一定条件下,当使用锐线光源时,吸光度A与单位体积原子蒸气中待测元素的基态原子数N0 成正比。

(三)基态原子数(N0)与待测元素原子总数(N)的关系

       在进行原子吸收测定时,试液应在高温下挥发并解离成原子蒸气——原子化过程,其中有一部分基态原子进一步被激发成激发态原子,在一定温度下,处于热力学平衡时,激发态原子数Nj与基态原子数N0之比服从波尔兹曼分布定律:

                      (11)

式中:

Gj、G0分别代表激发态和基态原子的统计权重(表示能级的间并

           度,即相同能量能级的状态的数目)

           Ej是激发态能量;K—波尔兹曼常数(1.83⨯10-23J/K)

           T—热力学温度

    在原子光谱中,一定波长谱线的Gj/G0和Ej都已知,不同T的Nj/N0可用上式求出。

当<3000K时,都很小,不超过1%,即基态原子数N0比Nj大的多,占总原子数的99%以上,通常情况下可忽略不计,则

                             N0≈N

   若控制条件是进入火焰的试样保持一个恒定的比例,则A与溶液中待测元素的浓度成正比,因此,在一定浓度范围内:

                 A=K·c                 (12)

   此式说明:

在一定实验条件下,通过测定基态原子(N0),的吸光度(A),就可求得试样中待测元素的浓度(c),此即为原子吸收分光光度法定量基础。

原子吸收分光光度计  

一.仪器的主要部件

(一)光源:

提供待测元素的特征谱线——共振线

  基本要求:

①辐射的共振线宽度明显小于吸收线宽度—锐线光源(∆νe<2⨯10-3nm)

            ②共振辐射强度足够大

            ③稳定性好,背景吸收小

 1.空白阴极灯:

低压气体放电管(Ne、Ar)

    一个阳极:

钨棒(末端焊有钛丝或钽片),

    一个空心圆柱形阴极:

待测元素

    一个带有石英窗的玻璃管,管内充入低压惰性气体

   此种空心阴极灯中元素在阴极中可多次激发和溅射,激发效率高,谱线强度大,发射强度与灯电流有关(电流增大,发射强度增大;但过大,谱线变宽)

2.多元素空心阴极灯:

发射强度弱

3.无极放电灯:

强度高。

但制备困难,价格高。

(二)原子化器:

将待测试样转变成基态原子(原子蒸气)的装置。

1.火焰原子化法

   原子化装置包括:

雾化器和燃烧器

(1)雾化器:

使试液雾化,其性能对测定精密度、灵敏度和化学干扰等都有影响。

因此,要求雾化器喷雾稳定、雾滴微细均匀和雾化效率高。

(2)燃烧器:

试液雾化后进入预混和室(雾化室),与燃气(如乙炔、丙烷等)在室内充分(均匀)混合。

最低的雾滴进入火焰中,较大的雾滴凝结在比                         上,经下方废液管排出。

   燃烧器喷口一般做成狭缝式,这种形状即可获得原子蒸气较长的吸收光程,又可防止回火。

   火焰原子化法比较简单,易操作,重现性好。

但原子化效率较低,一般为10—30%,试样雾滴在火焰中的停留时间短,约为10-4s,且原子蒸气在火焰中又被大量气流所稀释,限制了测定灵敏度的提高。

2.无火焰原子化法

   电热高温石墨炉原子化法

   原子化效率高,可得到比火焰大数百倍的原子化蒸气浓度。

绝对灵敏度可达10-9—10-13g,一般比火焰原子化法提高几个数量级。

   特点:

液体和固体都可直接进样;试样用量一般很少;

   但精密度差,相对偏差约为4—12%(加样量少)。

石墨炉原子化过程一般需要经四部程序升温完成:

①干燥:

在低温(溶剂沸点)下蒸发掉样品中溶剂

②灰化:

在较高温度下除去低沸点无机物及有机物,减少基体干扰

③高温原子化:

使以各种形式存在的分析物挥发并离解为中性原子

④净化:

升至更高的温度,除去石墨管中的残留分析物,以减少和避免记忆效应。

3.低温原子化法(化学原子化法)

(1)冷原子吸收测汞法

将试液中的Hg离子用SnCl2还原为Hg,在室温下,用水将汞蒸气引入气体吸收管中测定其吸光度。

(2)氢化物原子化法

   对和等元素,将其还原成相应的氢化物,然后引入加热的石英吸收管内,使氢化物分解成气态原子,并测定其吸光度。

(三)分光系统:

将待测元素的特征谱线与邻近谱线分开。

       基本组成与紫外可见分光光计单色器相同。

(四)检测系统:

将光信号转变成电信号—“光电倍增管”

(五)显色系统:

记录器、数字直读装置、电子计算机程序控制等

二.原子吸收分光光度

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1