数学人教版六年级下册圆柱的认识文档格式.docx

上传人:b****7 文档编号:22859434 上传时间:2023-02-05 格式:DOCX 页数:25 大小:28.84KB
下载 相关 举报
数学人教版六年级下册圆柱的认识文档格式.docx_第1页
第1页 / 共25页
数学人教版六年级下册圆柱的认识文档格式.docx_第2页
第2页 / 共25页
数学人教版六年级下册圆柱的认识文档格式.docx_第3页
第3页 / 共25页
数学人教版六年级下册圆柱的认识文档格式.docx_第4页
第4页 / 共25页
数学人教版六年级下册圆柱的认识文档格式.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

数学人教版六年级下册圆柱的认识文档格式.docx

《数学人教版六年级下册圆柱的认识文档格式.docx》由会员分享,可在线阅读,更多相关《数学人教版六年级下册圆柱的认识文档格式.docx(25页珍藏版)》请在冰豆网上搜索。

数学人教版六年级下册圆柱的认识文档格式.docx

长方形的宽是圆柱的()。

如果长方形的长贴在木棒上,那么长方形的长是圆柱的(),长方形的宽是圆柱的()。

2、把一个正方形的硬纸的宽贴在木棒上,快速转动木棒,转出来的形状是()。

正方形的边长是圆柱的()和圆柱的()。

(二)圆柱侧面展开图的形状

1、思考:

把圆柱的侧面剪开后得到一个什么图形?

把圆柱沿着高剪开后得到一个什么图形?

这个图形的长与圆柱的底面周长有什么关系?

宽与圆柱的高有什么关系?

(1)把圆柱的侧面剪开可以得到一个()或()、()、()。

(2)沿着圆柱的高把圆柱的侧面剪开可以得到一个()或()。

如果得到的是长方形,长方形的长等于圆柱(),宽等于圆柱的()。

如果得到是正方形,正方形的边长等于圆柱的()和()。

2、思考:

一张长方形纸或一张正方形纸能做成什么图形?

(三)对切截过程中圆柱变化的认识

1、如果将一个圆柱切成两部分,可以怎么切?

2、出示不同的切法及切开后截面的形状。

(四)圆柱在木板上滚过的轨迹是什么形状?

四、全课总结

通过今天的学习,你有哪些收获?

五、作业

完成教材第20页第1~5题。

 

第三单元第二课时圆柱的表面积

人教版小学六年级下册教材第21~22页

在初步认识圆柱的基础上,理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面符号,并能解决一些有关实际生活的问题。

通过操作、迁移、归纳、交流等数学活动,培养学生归纳、概念的能力及良好的空间观念和解决简单的实际问题的能力。

通过实践操作,在学生理解圆柱侧面积和表面积含义的同时,培养学生的理解能力和探索意识。

运用所学的知识解决简单的实际问题。

课件、圆柱体的学具

一、复习

1、圆的面积计算公式:

2、长方形的面积计算公式:

3、圆柱体的组成部分以及特征。

4、沿高竖着剪开圆柱的侧面,可能得到一个()形,长方形的长等于圆柱底面的(),宽等于圆柱的()。

也可能得到一个()形,正方形的一条边长等于圆柱底面的(),另一条边长等于圆柱的()。

如果斜着剪,可能得到一个()形,平行四边形的底等于圆柱底面的(),平行四边形的高等于圆柱的()。

二、探究圆柱的侧面积

1、怎样求圆柱的侧面积?

探究圆柱侧面展开图长方形的面积与圆柱的侧面积的关系?

(1)长方形的面积与圆柱的侧面积有什么关系?

(2)长方形的长与宽和圆柱的什么有关?

关系怎样?

(3)长方形的面积公式,由此推出圆柱体的侧面积公式。

同理:

根据正方形、平行四边形的面积公式也可以得出圆柱体的侧面积公式。

2、小结:

通过转化我们将一个封闭的曲面变为长方形,在此基础上我们发现了圆柱侧面与长方形的关系,发现了圆柱体侧面积的计算方法。

三、探究圆柱表面积

1、探究圆柱表面积的计算方法。

(1)圆柱体的表面由哪些部分组成?

(2)圆柱体的表面积怎样计算?

(3)生活中的圆柱体的表面积都是两个底面积加一个侧面积吗?

2、呈现生活中的几种情况:

(1)把会议厅柱子的表面贴上装饰纸,需要买多少平方米的彩纸?

(2)为了防止喝水时烫手,小明在妈妈圆柱形的茶杯上加了一圈布环,这圈布环的面积看样计算?

(3)做一个无底的圆柱形垃圾筒需要多少铁皮?

(4)一台压路机的前轮是圆柱形,前轮转动一周,压路的面积是多少平方米?

(5)做一个装牛奶的圆柱形罐子需要多少铁皮?

3、学习例4:

(1)学生尝试独立解决。

(2)从解决“厨师帽”这个问题中你们得到哪些启示?

解决实际问题时要弄清楚是求哪几个面。

做题时要联系生活实际,想一想,要计算面积的图形实际是什么样子的?

四、全课总结,提炼学习方法

今天我们一起研究了计算圆柱侧面积及表面积的方法。

你能说一说我们是怎样研究的吗?

书第22页做一做。

第三单元第三课时圆柱的表面积(练习课)

教材第23页第3-7题。

1、能根据实际情况解决问题,巩固圆柱表面积的计算方法。

2、提高学生分析问题的能力。

一、回顾计算公式

1、圆的面积公式

2、圆柱的侧面积公式

3、圆柱的表面积公式

二、基础题练习

1、根据图形的条件求圆柱的表面积

(1)已知圆柱底面直径是2厘米,高是8厘米。

(2)已知圆柱底面半径是6厘米,高是15厘米。

(3)已知圆柱底面周长是10厘米,高是9厘米。

2、讲解教材第23页,第2题。

(1)学生读题,说出已知条件和问题。

(2)理解题意:

轮宽2米,就是圆柱的什么?

求压路面积就是求圆柱的什么?

(3)想想这道题要先求什么,再求什么?

(4)想求圆柱的底面周长的公式和求圆柱侧面积的公式。

(5)列式解答。

三、提高题的分析

1、学生自主完成第4题。

要求按做第2题的方法去做。

(1)抹水泥部分的面积就是求圆柱的一个底面积加一个侧面积。

(2)已知底面直径和高,求侧面积。

(3)已知直径,求圆的面积。

(4)最后求出抹水泥部分的面积。

2、讲解教材第7题。

(1)学生读题,找出已知条件和要求的问题。

(2)做这顶帽子,哪种颜色的布用得多?

黑布,就是求圆柱的一个侧面积加一个底面积。

红布,就是求一个圆环的面积。

(3)学生独立解答。

(4)全班对正。

四、总结全课。

今天这节课你有什么收获?

在解决有关圆柱的实际问题时,要先弄清题目是求一个侧面的面积,或求一个侧面的面积加一个底面的面积,还是求一个侧面的面积加两个底面的面积。

然后利用公式求出结果。

书第24页第8题,第10题。

第三单元第四课时圆柱的表面积(练习课)

教材第24页第9题,第11-14题。

1、学生说说解决圆柱的实际问题中,关键是什么?

2、说说圆柱的侧面积、底面积、表面积的公式。

二、分析讲解

1、教材第24页第9题

(1)学生先读题,了解题的已知条件和问题。

(2)学生自己分析这道题怎样解决。

(3)学生说说解题思路。

这个灯笼是圆柱形的,但上、下底面的分别留了78.5平方厘米的口,就说明他的上、下底面是一个圆环。

要求用了多少彩纸?

就是一个侧面积加两个圆环的面积。

(4)学生独立列式解答。

2、教材第24页第11题

(1)学生先在小组内讨论解题方法。

要求:

①先仔细看清图形,它由哪些部分组成。

②它们的表面积怎样算?

③在小组内列式计算。

(2)小组汇报交流。

3、讲解教材第24页第14题

(1)学生说说圆柱的侧面展开图是一个正方形时,它与圆柱的关系。

正方形的边长等于圆柱的底面周长和高。

(2)要求圆柱的底面直径与高的比,我们要设正方形的边长为1

(3)计算出圆柱的底面直径

(4)写出底面直径与高的比,并化简。

4、回顾刚才所讲的练习题,总结一下做题的方法。

三、总结全课

通过这节课的学习,你有什么收获?

四、作业

教材第24页第12题。

第三单元第五课时圆柱的体积

教材第25页例5

学生经历用切割拼合的方法推导出圆柱体积公式的过程,理解圆柱体积公式的推导过程,掌握圆柱体体积的计算方法。

在自主探究的过程中,运用圆柱体的体积解决简单的实际问题,培养学生独立思考及解题能力。

在体积公式的推导过程中渗透极限思想。

学生经历并理解圆柱体积公式的推导过程。

在自主探究的过程中,运用圆柱体的体积解决简单的实际问题。

教学准备:

关于例题的多媒体课件。

教学方法:

引导法、提问法、独立思考

教学思路:

复习-自主探究-巩固新知-总结全课

1、复习圆面积公式的推导过程。

大家还记得我们在学习圆的面积时是怎样推导出圆的面积公式的吗?

2、学生回顾,教师利用课件演示。

提问:

当我们把圆分得没法再分时,所拼成的图形就是一个什么图形?

用字母表示:

S=

3、提出问题:

我们在推导圆面积公式时经历了怎样的过程?

二、自主探究。

推导圆柱的体积公式。

1、创设情境,在价格相同时,比较两款蛋糕,买哪款更划算?

提问:

要触屏这个问题,你打算怎么办?

圆柱体的体积怎样求呢

2、我们根据前面所学,把圆柱体转化成什么图形?

3、课件演示进一步渗透极限,提升认识。

①课件演示:

电脑课件将圆柱体等分4份、8份、16份、32份使学生观察到由曲变直的变化。

②展开形象:

引导学生想象如果分成64份、128份,再继续分下去会怎样,从而认可由曲变直的趋势。

③得出结论:

最后能得到一个长方体,而不是近似的。

4、得到的长方体与圆柱体有怎样的关系?

圆柱的体积等于长方体的体积,圆柱的底面积等于长方体的底面积,圆柱的高等于长方体的高。

5、学生说说圆柱体积公式的推导过程。

圆柱的体积计算公式是:

V=()。

三、巩固新知

1、学生利用公式解决书第25页做一做第1题。

2、学生完成教材第25页做一做第2题,一生上台板演计算过程。

3、强调体积的单位。

四、总结全课

通过今天学习,你有什么收获?

教材第28页第1题。

第三单元第六课时圆柱的容积

教材第26页例6

在自主探究圆柱体容积的过程中,巩固圆柱的体积的计算方法。

在解决实际问题中,培养学生思维的灵活性和变通性。

提高学生的学习兴趣,树立学好数学的容积的信心。

正确、灵活地运用圆柱的体积计算方法去解决圆柱的容积问题。

圆柱的容积计算方法。

提前在黑板上出示例6。

复习-自主学习-全班交流-巩固练习-总结全课

1、什么是体积?

什么是容积?

计算物体体积与容积有什么异同?

2、回顾公式。

(1)圆柱底面积公式:

圆柱底面积=圆周率×

半径×

半径

(2)圆柱的体积公式:

圆柱的体积=底面积×

V=ShV=

h

3、计算圆柱的体积。

(1)已知圆柱的底面积是9平方米,高是12米,圆柱的体积是多少?

(2)已知圆柱的底面半径是1分米,高是9厘米,圆柱的体积是多少?

二、自主学习。

阅读书第26页,完成下面的问题。

1、例6中的杯子是什么形状的?

2、要求杯子能不能装下这袋牛奶,就要计算出杯子的什么?

3、为什么题目要强调“杯子数据是从里面量”呢?

4、圆柱的容积计算公式是:

5、怎样计算杯子的容积?

三、全班交流

1、学生依次回答上面前4个问题。

2、一生上台板演计算过程。

3、强调容积的单位。

四、巩固练习

教材第26页做一做第1、2题。

五、总结全课

六、作业

教材第28页第2题。

七、板书设计

圆柱体底面积公式:

圆柱体积公式:

V=

圆柱容积公式:

V=

例6:

第三单元第七课时等积变形

教材第27页例7

在自主探究不规则物体容积的过程中,巩固不规则物体容积的计算方法。

渗透等积变形的思想,提高学生的学习兴趣,树立学好数学的容积的信心。

正确、灵活地运用圆柱的容积计算方法去解决不规则物体的容积问题。

渗透等积变形的思想。

复习-情境导入—合作探究-交流展示-巩固练习-总结全课

1、回顾容积的计算公式及其单位。

2、还记得怎样测量土豆的体积吗?

3、揭示课题:

不规则物体的容积计算(等积变形)

二、情境导入

小新和同学小青在家玩,发现爸爸装葡萄酒的空酒瓶,就问小青,你知道这上瓶了子能装多少水吗?

小青说,我知道。

于是,他找来尺子,水。

通过测量、计算就得出了空酒的容积。

同学们,你们想知道吗?

1、怡宝矿泉水瓶能装多少水?

2、学生自由说说自己的办法。

3、小组合作探究。

条件:

怡宝矿泉水瓶1个、一些水、尺子。

已学知识:

圆柱的容积计算

我的发现:

(1)怡宝矿泉水瓶的容积=水的()

(2)把怡宝矿泉水瓶倒置后,()不变。

(3)倒置前空余部分的容积与倒置后空余部分的容积有什么关系?

(4)通过把矿泉水瓶倒置,我们把瓶子的容积转化成了()

四、交流展示

两个小组汇报。

(用投影仪投影探究结果)

五、A组练习

1、教材第27页做一做。

2、饮料瓶中装有18升的饮料,正放时饮料的高度是15厘米,倒放时空余部分的高度是10厘米,这个瓶子最多还能装进多少升的饮料?

B组练习

1、圆柱体的底面积是10平方米,高是15米,圆柱体的体积是多少?

2、圆柱体的底面半径是2分米,高是7分米,圆柱体的体积是多少?

3、如果你还能做出书上第27页的做一做,那你太棒了。

六、总结全课

通过今天这节课的学习,你有什么收获?

七、作业

教材第28页第6题。

板书:

不规则物体的容积

(等积变形)转化

第三单元第八课时圆柱体积的练习

教材第29页第7、10、11、12、14、15题。

通过练习,使学生进一步理解并掌握圆柱体积的计算公式,会运用公式计算体积,理解有关的简单实际问题。

回顾圆柱的体积公式:

二、基础题的练习

1、圆柱的底面积是6平方米,高是12米,圆柱的体积是多少?

2、圆柱的底面半径是3厘米,高是10厘米,圆柱的体积是多少?

3、圆柱的底面周长是12.53分米,高是5分米,圆柱的体积是多少

三、提高题的练习

 1、讲解第7题。

(1)学生读题,理解题意。

 月亮门是什么形状的?

它的体积怎样计算?

(2)学生思考,怎样求出现在用了多少立方米土石?

(4)学生列式计算,一生上台板演。

2、讲解第10题

(1)学生读题后,问:

你了解到哪些数学信息?

(2)从题中你知道铁块的体积与谁的体积是相等的?

(3)下降水的体积怎样计算?

(4)学生再说说这道题怎样解答?

(5)学生列式计算。

3、第12题小组交流讨论完成。

4、讲解第15题。

(1)学生通过本题,探究出面积相等的长方形与正方形卷成圆柱,哪个圆柱的体积最大?

(2)学生分组计算出四个图形的体积。

(3)学生汇报结果。

(4)比较结果,你有什么发现?

(5)小结:

圆柱侧面积相同,底面周长越大,体积越大。

教材第29页第8、9题。

第三单元第十课时圆锥的认识

教材第31-32页

能完整、准确地掌握圆锥的基本特征及各部分的名称,会测量圆锥的高。

经历观察、想象、操作、讨论、分析、验证等过程,让学生在研究圆锥的活动中,真正学会测量圆锥的高,培养学生有序观察、合作学习、合理猜想和科学探究的能力及动手操作能力和空间观念。

培养学生善于观察、比较、勇于思考、探索的精神,以及严谨、求实的科学态度。

圆锥的基本特征及各部分的名称。

圆锥高的认识。

课件、一个三角形,一个圆柱。

演示法、实践法、合作探究法。

教学程序:

复习导入-感知圆锥-研究圆锥的高-实践辨析-总结全课

一、复习导入

1、我们研究圆柱体时,发现一个长方形沿它的一条边旋转一周会形成一个圆柱体。

如果给你一个直角三角形,以一条直角边为轴旋转,还会是圆柱体吗?

学生猜想,并动手验证。

学生汇报结论。

还可以怎样旋转?

2、寻找生活中的圆锥。

3、回忆研究圆柱的有关知识和相关方法,想这节课你想从哪些方面研究圆锥?

二、感知圆锥

1、学生看看、摸摸准备的圆锥,说说你对圆锥的初步认识。

2、小组汇报。

(1)圆锥有一个曲面,一个顶点,一个底面。

(2)圆锥的展开图是一具圆和一个扇形。

(3)外形与圆柱的不同点:

圆柱有两个圆形作底面,圆锥只有一个底面,上面是一个顶点。

(4)圆锥的侧面展开图。

怎样剪开呢?

得到一个什么图形呢?

三、研究圆锥的高

1、圆锥高的认识。

(1)高在哪里?

(2)什么是圆锥的高?

(3)圆锥的高有几条?

(4)怎样测量圆锥的高?

2、小结。

四、实践辨析

1、判断

(1)圆锥有无数条高。

(2)圆锥的侧面是一个曲面,展开后是一个扇形。

(3)从圆锥的顶点到底面上任意一点的连线叫做圆锥的高。

2、比较圆柱和圆锥的特征。

五、课堂小结

这节课你学到了什么?

是通过什么方法学到的?

1、教材第32页做一做。

2、教材第35页第1、2题。

第三单元第十一课时圆锥的体积

教材第33页

通过实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

掌握圆锥体积的计算公式。

正确探索出圆锥体积和圆柱体积之间的关系。

一对等底等高的圆锥和圆柱。

1、圆锥有什么特征?

(使学生进一步熟悉圆锥的特征:

底面、侧面、高和顶点)

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:

“圆柱的体积=底面积×

高”。

二、新课

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

(2)圆锥的体积该怎样求呢?

能不能也通过已学过的图形来求呢?

(指出:

我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?

(4)先在圆锥里装满水,然后倒入圆柱。

让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。

(5)这说明了什么?

(这说明圆锥的体积是和它等底等高的圆柱的体积的)

圆锥的体积=

×

圆柱的体积=

底面积×

高,字母公式:

Sh

2、教学练习六第4题

(1)这道题已知什么?

求什么?

已知圆柱的体积,求与它等底等高的体积该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

3、巩固练习:

完成教材第34页做一做第1题。

三、教学例3.

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?

(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?

(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。

(注意学生最后得数的取舍方法是否正确)

1、做练习六的第5题。

学生先独立判断这三句话是否正确,然后全班核对评讲。

2、做练习六的第7题。

(1)引导学生学生思考回答以下问题:

① 这道题已知什么?

② 求圆锥的体积必须知道什么?

③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

五、总结

这节课学习了哪些内容?

你是如何准确地记住圆锥的体积公式的?

圆柱的体积=底面积×

圆锥的体积=×

圆柱的体积=×

字母公式:

V=Sh

第三单元第十二课时圆锥体积的练习

教材第36页第8-11题。

进一步巩固学生对圆锥的体积公式的运用,能运用圆锥的体积公式解决生活中的实际问题,培养学生解决问题的能力。

1、圆锥的体积公式。

2、等底等高的圆锥与圆柱的体积关系。

1、已知圆锥的底面积是8平方米,高是12米,求圆锥的体积是多少?

2、已知圆锥的底面半径是4厘米,高是6厘米,求圆锥的体积是多少?

3、已知圆锥的底面径是6分米,高是7分米,求圆锥的体积是多少?

三、习题讲解

1、教材第36页第8题。

(2)学生思考,这堆稻谷的体积是多少?

(潜能生说说并上台板演)

(3)当每立方米稻谷重650千克时,这堆稻谷重多少?

(4)小明家有0.25公顷稻田,平均每公顷稻谷多少千克?

学生列式计算,一生上台板演。

(5)如果每千克稻谷售价为2.8元,这些稻谷能卖多少钱?

学生逐一解答。

2、讲解第9题、第10题。

通过媒体演示,使学生弄清一个圆柱与一个圆锥的底面积和体积分别相等,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1