H型钢柱拼接节点技术手册Word文档下载推荐.docx

上传人:b****8 文档编号:22829517 上传时间:2023-02-05 格式:DOCX 页数:18 大小:236.65KB
下载 相关 举报
H型钢柱拼接节点技术手册Word文档下载推荐.docx_第1页
第1页 / 共18页
H型钢柱拼接节点技术手册Word文档下载推荐.docx_第2页
第2页 / 共18页
H型钢柱拼接节点技术手册Word文档下载推荐.docx_第3页
第3页 / 共18页
H型钢柱拼接节点技术手册Word文档下载推荐.docx_第4页
第4页 / 共18页
H型钢柱拼接节点技术手册Word文档下载推荐.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

H型钢柱拼接节点技术手册Word文档下载推荐.docx

《H型钢柱拼接节点技术手册Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《H型钢柱拼接节点技术手册Word文档下载推荐.docx(18页珍藏版)》请在冰豆网上搜索。

H型钢柱拼接节点技术手册Word文档下载推荐.docx

它多用于抗震设计或弹塑性设计结构中柱的拼接连接设计f以确保结构体的连续性、强度和刚度。

当柱的拼接连接采用焊接连接时,通常采用完全焊透的坡口对接焊缝连接,并采用引弧板施焊。

此时,视焊缝与被连接翼缘和腹板是等强度的,不必进行焊缝的强度计算。

H形截面柱的拼接连接有:

柱翼缘采用焊缝连接,腹板采用高强度螺栓摩擦型连接。

翼缘的焊接连接,通常也是采用完全焊透的坡口对接焊缝连接,并采用引弧板施焊。

此时,视焊缝与被连接的翼缘是等强度的,不必进行焊缝强度的计算;

而腹板连接所需的摩擦型连接的高强度螺栓及其拼接连接板,可按全部采用高强度螺栓逬行拼接连接的有关要求来确走。

H形截面柱的拼接连接还有:

柱翼缘和腹板全部采用高强度蝮栓摩擦型连接。

采用等强度设计法进行柱翼缘和腹板全部采用摩擦型连接高强度螺栓的拼接连接设计时,可按以下要求确定。

(1)作用于柱拼接连接处的内力有轴心压力、弯矩和剪力。

柱的拼接连接按等强度设计法

的设计内力,可按下列公式计算:

轴心压力

弯矩

参数说明:

吒为由口除高强度螺栓孔后的净截面模呈,可按下式计算:

‘:

为柱扣除高强度螺栓孔后的净截面惯性矩,可按下式计算:

I石-毎詳fM(冬尹J-貞吉心心‘+匕氏昇〕

昨为柱的毛截面惯性矩‘可按下式计算:

7为柱翼缘的毛截面惯性矩,可按下式计算:

兀为柱腹板的毛截面惯性矩,可按下式计算:

咋=£

匕(孔_%尸

孔为柱的截面高度;

取为柱的截面克度(翼缘竟度);

S为柱单侧翼缘计算削弱截面上的高强度螺栓数目,对并列布置吩=2(翼缘上共有两列),或5=4(翼缘上共有四列),对错列布置可近似取(翼缘上共有四列,但中间两列错列布置);

心为柱翼缘的高强度螺栓孑雇;

*咒为柱的翼缘厚度;

♦为柱的腹板厚庚;

心为柱腹板的高强度螺栓孑准;

旳为柱截面中和轴至腹板的高强度螺栓孔中心的距离;

竝为柱单侧翼缘扣除高强度螺栓孔后的净截面面积,可按下式计算:

4二为柱腹板扣除高强度螺栓孔后的净截面面积,可按下式计算(也可近似地取腹板毛截面面积的0.85倍):

亠为柱腹板的高度;

叫『为柱腹板计算削弱截面上的高强度螺栓数目;

于为钢材的抗拉、抗压和抗弯强度设计值,根据计算点处钢板材质、厚度不同而取不同数值,按下文表格中数值采用;

尤为钢材的抗剪强度设计值,根据计算点处钢板材质、厚度不同而取不同数值,按下文表格中数值采用。

表1!

钢材的强度设计值(N/mm3)

旗材

抗拉■抗圧和抗弯f

抗w

A

牌号

厚度或直径

(mm)

0235

215

125

>

16—40

205

120

卜・・・-_

40-60

200

115

60-100.

190

110

Q345的

如6

310

180

16-35

295

170

35〜50

265

155

1一—

50^100

250

Q390钢

<

16

350

20S

33S

35-50

3诗

18Q

50-100

Q42O钢

380

220

360

210

340

195

325

185

瑞面承压

(刨平顶屢)

(2)按照等强度条件,拼接连接的承载力设计值应等于柱子板件的承载力设计值。

柱子在轴心压力、弯矩和剪力共同作用下,柱翼缘的等强度条件是:

因此柱翼缘的拼接连接则取作为设计内力值(即“:

=殆)。

此时柱子单侧翼缘连接所需的高强度螺栓数目■应按下式计算:

 

一(—*

其他参换前文参数说明。

(3)同理,按照等强度条件f柱子在$由心压力、弯矩和剪力共同作用下,柱腹板的等强度

条件是:

因此柱腹板的拼接连接则取”二作为设计内力值(即“二=I)。

此时柱腹板连接所需的高强度螺栓数目,应按下式计算:

参数按前文参数说明。

等强度设计法多用于结构按抗震设计或弹塑性设计中柱的拼接连接设计以保证构件的连续性、强度和刚度。

因此此处对H形钢柱拼接节点做抗震验算。

抗農验算时,需满足螺栓孔等对构件全截面的削弱率不应大于25%。

按抗震设计的高层钢结构,其连接节点的最大承载力,可分别按以下要求确走,同时应满足

相关要求。

(1)焊缝的极限承载力应按下列公式计算:

对接焊缝受拉角焊缝受剪了铭£

参数说明:

碍为焊缝的有效受力面积;

龙为构件母材的抗拉强度最小值,对Q235钢化亠5皿品.对q345钢

ATWWmwf2•对Q390钢兀1"

SONfmwf2;

对q420A=5203Z/JWW2

(2)高强度螺栓连接的极限受剪承载力,应取下列二式计算的较小者:

考虑到螺栓连接中部分螺栓的破坏出现在螺栓杆而不是螺纹处,使螺栓连接的最大抗剪承载力在整体上有所提高,所以式中0.58可用0.75代替。

软件计算过程中,考虑到计算的普遍性及安全性,仍采用0.58计算。

心、昭分别为一个高强度螺栓的极限受勢承载力和对应的板件极限承压力;

力才为螺栓连接的剪切面数星;

心为螺栓螺纹处的有效截面面积;

代为螺栓钢材的抗拉强度最小值;

对10.9级高强螺栓代=1000^/mm?

d为螺栓杆直径;

迟上为同一^力方向的钢板厚度之和;

盅为螺栓连接板的极限承压强度,取13兀。

(MJ

32)

%

127)

l.fi

2.C

X5

2d

护经购內

垃,731

討•饰

炸3押

以笫6

2CLV6

C

[21052123.051

!

1

27,727

也後@:

丿mm

一」

e.toe

IL835

S3.8J5

n.aw

暹.

20,7i2

21754

16.2i1

悖樂樓裁響茨应《说【

a解〕

5

1.57

1-92

z筋

3.03

3.53

:

弘59

5-<

51

纱爭鬆号聲獄径鶴于鋼二慕知汝彝莎統协笏康家求尉偷y〔或严j去牢;

—A0*楼

螺栓螺纹处的有效截面面积

(3)有螺栓孔等削弱的杆件最大承载力r可按下列公式计算:

对轴心拉力N.二AAN.二辄(取两者小值)

对剪力今0吟

4为扣除螺栓孔等以后的净截面面积;

&

为拉力方向的端距;

匸为受拉杆件在连接处的厚度;

为构件母材的抗拉强度最小值。

按抗農设计的高层钢结构,其连接节点的最大承载力,应分别满足以下的要求。

连接弹性设计时,构件上下翼缘的端截面应满足连接的弹性设计要求,腹板应计入剪力和弯矩。

连接节点的极限受弯、受剪承载力,应符合下列要求:

拼接采用螺栓连接时,尚应符合下列要求:

翼缘*:

)心%

腹板品(略吧卜尿乔而—列螺栓时

込虻、磴h阙頁顾耐多列螺栓时

柱构件插由力作用时的全截面受弯承载力心,应按下列公式计算:

软件主要针对工字形柱截面绕强轴作用时:

当^,<

013时冬=叫

当叭>

013时M声

“■为构件拼接的的极限受弯承载力;

柱翼缘采用焊透的对接坡口焊缝连接时:

柱截面的抗弯最大承载力:

柱翼缘采用高强度螺栓摩擦型连接时:

柱翼缘拼接连接板的净截面抗拉最大承载力的相应最大弯矩:

叭=為(亦斤)£

十血(1毎勺応

柱翼缘连接高强度螺栓的抗剪最大承载力的相应最大弯矩:

船=血忧、吧)

柱翼缘板的边端截面抗拉最大承载力的相应最大弯矩:

矶.-~^r

柱翼缘拼接板边端截面抗拉最大承载力的相应最大弯矩:

叭=叫%仏f)£

5皿2*_九-』■

為、为内、夕卜侧翼缘拼接板的净截面面积;

"

了为一个翼缘的有效截面面积,需考虑当竟厚比超限时取为有效截面面积;

砒为腹板拼接中弯矩引起的一个螺栓的最大剪力,按以下方法计算:

■=討5

务为柱翼缘厚度;

心为_侧翼缘连接板的净截面面积;

E为连接节点单侧钢柱的一个翼缘上的高强螺栓数目;

&

为拉力方向的端距;

兀为构件母材的抗拉强度最小值;

吩为构件拼接的极限受剪承载力;

垂直于角焊缝受剪时,可提高1.22倍;

梁腹板抗剪时:

连接板抗剪时:

■=人如="

丹_屈岛高强螺栓抗剪时上=血(吗心、吗吧)氏2为腹板断面计算处的一列螺栓的数目;

吗为连接节点单侧钢柱腹板上的高强度螺栓数目;

4为腹板连接蝮栓孔直径;

毎为连接板截面高度;

仏为连接板总厚度;

叫为构彳牛的全塑性受弯承载力;

“声为构件插由向力时的全截面受弯承载力;

%为构件轴向屈服承载力,取耳=心・;

4为构件扣除螺栓孔等以后的净截面面积;

为柱计算位置处的腹板高度和厚度;

兀为抗拉强度最小值;

毎为钢材屈服强度。

为使承受弯矩的梁或柱塑性区不产生局部失稳,塑性区范围内梁或柱板件的克厚比,可参考

下表确走。

*1

不趙过口毎牺期励卽性区楚AB内毀或轻恆体姦踣比竝離值

ftif«

用够埶鹤聲探刃钟那好箱眶楼血K畝点怜庚卷拠碍萍分!

7⑥黴田鮒0彭輒細酸药*申>0网5>V¥

^O.X?

13林

咚:

引心/创勺}

^VWWWW^MFVh>

ww,••^WW»

wwi

9tfi

rr^K^if!

»

W53ft希彩疲徉甲扳:

孕幾盘滩垠番

••••・・・■•••••••••••••・•’・•••*.••/hi%

QIGRM

44

h

齐#SZ入Z入Z入zaz入Z入ZbZf/

3J

■-•■*--*/•'

・V//•夕・WW7"

7”7,

10

丄:

字够捣阕直农

+3

弟形<K垂啊

n

33

1b

«

V

9

Um

W杏铁倚的邸歼

30

1

Ifl辉破rtf於檢

$rl2GAVy

T2胡伺珂丿妙

72hW^y

療疋々屋搓犊的菱桂毎俘憲;

9比皱烦

加去呦紳滋用半W祁悅茶外嚴酣钞啊神at战離仪念刁二

和妙v/y窮

'

l*Wb**IHlilTb•*•ITVmWTW

梁、柱等构件的全塑性弯矩,可分别按以下情况确定。

无轴心力作用时,构件的全塑性弯矩为:

叫二兀咅

■为构件截面的塑性模量,可按下列公式计算:

H形截面主轴方向齐

有轴心力时,软件主要针对H形柱截面绕强轴作用时:

当%2虫时叫=M9(孔按上式计算)

叫按上式计算)

N为构件的作用轴心力;

叫为构件的轴向屈服强度,取%=4&

九为腹板的截面面积;

"

为构件的主截面面积;

气为无$由心力作用时,构件的全塑性受弯承载力。

(二)实用设计法

实用设计法是以被连接柱翼缘和腹板各自的截面面积分担作用在拼接连接处的轴心压力耳,柱翼缘同时承受压力劭和绕强轴的全部弯矩"

,以及腹板同时承受轴心压力弘和全部勢力矿来进行拼接连接设计的。

当拼接连接处的内力小于柱承载力设计值的一半时从柱的连续性来衡呈拼接连接节点的性能,其设计用内力应取柱承载力设计值的1/2。

此处设计方法如下:

求取构件轴心压力承载力:

叽=毎

剪力承载力:

弯矩承载力:

叭=町

MN1

——+——>

-

当M“叫2时,采用实际内力AT、N进行计算

r>

i

当陷2时,采用实际内力了逬行计算

V1V

—V—_5.

当陷2时,采用对应位置的承载力的一半2进行计算

例如腹板位置,剪力按空考虑,轴力仍按实际轴力*进行计算采用实用设计法来进行柱翼缘和腹板全部采用高强度螺栓摩擦型拼接连接的设计时,可按下列要求确走(当翼缘采用焊透的坡口对接焊缝连接时,设计方法类同,根据实际情况具体分析即可):

(1)

在轴心压力码和弯矩“■共同作用下,柱单侧翼缘连接所需的高强度螺栓数目,应按下式计算:

A为柱单侧翼缘的毛截面面积;

4为柱的毛截面面积;

N为作用在拼接连接处的轴心压力;

M为作用在拼接连接处绕强轴的弯矩;

Sc为柱的翼缘厚度;

叫为一个摩擦型高强度螺栓的抗剪承载力设计值。

(2)在轴心压力叽和剪力P共同作用下,柱腹板连接所需的高强度螺栓数目,应按下式

计算:

儿为柱腹板的毛截面面积;

“为柱的毛截面面积;

V为作用在拼接连接处的剪力;

%为一个摩擦型高强度螺栓的抗剪承载力设计值。

柱翼缘和腹板的拼接连接板的截面尺寸,可按以下要求确走。

(1)为使拼接连接节点具有足够的强度,保持柱刚度的连续性,在确走柱翼缘和腹板的拼

接连接板时,应同时满足下列公式的要求:

F为柱单侧翼缘连接板扣除高强度蝮栓孔后的净截面面积;

£

为柱单侧翼缘扣除高强度螺栓孔后的净截面面积,按下式计算:

J为柱腹板拼接连接板扣除高强度螺栓孔后的净截面面积;

心为柱腹板扣除高强度螺栓孔后的截面面积,按下式计算:

为柱翼缘和腹板的拼接连接板扣除高强度螺栓孔后的净截面模星,当柱翼缘采用焊透的坡口对接焊缝连接时,此时应计算腹板拼接板和柱翼缘组合下的净截面模呈;

吧为柱扣除高强度螺栓孔后的净截面模星,按下式计算:

K=A/(°

卑)

(2)柱翼缘拼接连接板的设置,原则上应采用双剪连接;

当医院克度较窄,构造上采用双

剪连接有困难时r亦可采用单剪连接,但只宜用于内力较小的情况。

在确定柱翼缘拼接连接板时,应考虑连接板的对称性和互换性的施工特点。

通常情况下,翼缘外侧拼接连接板的盍度可取与翼缘同宪。

根据上述第

(1)项的要求,翼缘拼接连接板的厚度,可按下列公式计算。

当采用双剪连接时:

=-^^+3-6

4bmm且不宜小于10mm

为翼缘内侧拼接连接板的克度。

当采用单剪连接时:

尙二纸+且不宜小于10mm

(3)柱腹板的拼接连接板,-般均应在腹板两侧成对配置r即采用双隽连接。

根据上述第

(1)项的要求,腹板拼接连接板的厚度,可按下式计算:

朋mm且不宜小于6mm

心为柱的腹板高度;

为腹板拼接连接板(水平方向)的长度。

当节点计算时,需针对用户给走的弯矩及剪力值,首先对母材强度加以验算,判断其是否满足要求。

当其超出要求时,软件会给出判走结果。

所以此时要求用户在节点计算时,按实际情况输入真实有效的弯矩及剪力值(因节点所涉构彳牛如果出现母材强度不足,则在构件计算阶段即发生不满足,所以需用户按实输入弯矩及剪力值)。

附:

高强度螺栓摩擦型连接中,每个高强度螺栓的承载力设计值呼按下式计算:

町=Q%f厨

”歹为传力摩擦面数目(单剪时为1,双剪时为2);

“为摩擦面的抗滑移系数,按下文表格采用;

P为一个高强度螺栓的预拉力,按下文表格采用。

表7,2,27摩擦面的抗滑移系数*

在连接址构件銭M廁的处理片法

构件的制号

Q2雋制

Q3佔钢钢

Q42O锚

0.45

a5u

0.5Q

帧砂(九》看涂无机M锌漆

635

0.10

亿40

0.45

LSO

0.50'

钢绶剧清除浮锈或未经处理

的壬净轧制表面

Q.30

f弭3S

40

表7壽-个离强度螺栓的预拉力門kN}

娴性的性施铸级

螺性公称应径<mm)

M16

M20

M22

M24

M27

M30;

12S

ISO

230

286

Uh9级

HiO

ISS

MO

225

290

355

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1