自动控制工程基础复习题附答案Word文档下载推荐.docx
《自动控制工程基础复习题附答案Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《自动控制工程基础复习题附答案Word文档下载推荐.docx(24页珍藏版)》请在冰豆网上搜索。
8.一阶系统G(s)=
K
Ts+
的时间常数T越大,则系统的输出响应达到稳态值的时间
(A)
A.越长B.越短
C.不变D.不定
1/15
9.拉氏变换将时间函数变换成(D)
A.正弦函数B.单位阶跃函数
C.单位脉冲函数D.复变函数
10.线性定常系统的传递函数,是在零初始条件下(D)
A.系统输出信号与输入信号之比
B.系统输入信号与输出信号之比
C.系统输入信号的拉氏变换与输出信号的拉氏变换之比
D.系统输出信号的拉氏变换与输入信号的拉氏变换之比
11.若某系统的传递函数为G(s)=
Ts
,则其频率特性的实部R(ω)是(A)
2T
2
B.-
KK
C.D.-
1T1
T
12.微分环节的频率特性相位移θ(ω)=(A)
A.90°
B.-90°
C.0°
D.-180°
13.积分环节的频率特性相位移θ(ω)=(B)
14.传递函数反映了系统的动态性能,它与下列哪项因素有关?
(C)
A.输入信号B.初始条件
C.系统的结构参数D.输入信号和初始条件
15.系统特征方程式的所有根均在根平面的左半部分是系统稳定的(C)
A.充分条件B.必要条件C.充分必要条件D.以上都不是
16.有一线性系统,其输入分别为u1(t)和u2(t)时,输出分别为y1(t)和y2(t)。
当输入为
a1u1(t)+a2u2(t)时(a1,a2为常数),输出应为(B)
A.a1y1(t)+y2(t)B.a1y1(t)+a2y2(t)
C.a1y1(t)-a2y2(t)D.y1(t)+a2y2(t)
17.I型系统开环对数幅频渐近特性的低频段斜率为(B)
A.-40(dB/dec)B.-20(dB/dec)
C.0(dB/dec)D.+20(dB/dec)
18.设系统的传递函数为G(s)=
25
2s
s5
,则系统的阻尼比为(C)
A.25B.5C.
D.1
19.正弦函数sint的拉氏变换是(B)
A.B.
s
C.22
D.22
2/15
20.二阶系统当0<
<
1时,如果增加,则输出响应的最大超调量%将(B)
A.增加B.减小
C.不变D.不定
21.主导极点的特点是(D)
A.距离实轴很远B.距离实轴很近
C.距离虚轴很远D.距离虚轴很近
22.余弦函数cost的拉氏变换是(C)
C.
s1
D.
22
23.设积分环节的传递函数为G(s)=
,则其频率特性幅值M()=(C)
C.D.
24.比例环节的频率特性相位移θ(ω)=(C)
25.奈奎斯特稳定性判据是利用系统的(C)来判据闭环系统稳定性的一个判别准则。
A.开环幅值频率特性B.开环相角频率特性
C.开环幅相频率特性D.闭环幅相频率特性
26.系统的传递函数(C)
A.与输入信号有关
B.与输出信号有关
C.完全由系统的结构和参数决定
D.既由系统的结构和参数决定,也与输入信号有关
27.一阶系统的阶跃响应,(D)
A.当时间常数T较大时有振荡B.当时间常数T较小时有振荡
C.有振荡D.无振荡
28.二阶振荡环节的对数频率特性相位移θ(ω)在(D)之间。
A.0°
和90°
B.0°
和-90°
和180°
D.0°
和-180°
29.某二阶系统阻尼比为0.2,则系统阶跃响应为(C)
A.发散振荡B.单调衰减
C.衰减振荡D.等幅振荡
二、填空题:
1.线性控制系统最重要的特性是可以应用___叠加__原理,而非线性控制系统则不能。
2.反馈控制系统是根据输入量和__反馈量__的偏差进行调节的控制系统。
3.在单位斜坡输入信号作用下,0型系统的稳态误差ess=_____。
3/15
4.当且仅当闭环控制系统特征方程的所有根的实部都是__负数__时,系统是稳定的。
5.方框图中环节的基本连接方式有串联连接、并联连接和__反馈_连接。
6.线性定常系统的传递函数,是在_初始条件为零___时,系统输出信号的拉氏变换与输入
信号的拉氏变换的比。
-at的拉氏变换为
7.函数te
(s
a)
。
8.线性定常系统在正弦信号输入时,稳态输出与输入的相位移随频率而变化的函数关系称
为__相频特性__。
9.积分环节的对数幅频特性曲线是一条直线,直线的斜率为__-20__dB/dec。
10.二阶系统的阻尼比ξ为_0_时,响应曲线为等幅振荡。
11.在单位斜坡输入信号作用下,Ⅱ型系统的稳态误差ess=__0__。
12.0型系统对数幅频特性低频段渐近线的斜率为___0___dB/dec,高度为20lgKp。
13.单位斜坡函数t的拉氏变换为
14.根据系统输入量变化的规律,控制系统可分为__恒值__控制系统、___随动___控制系
统和程序控制系统。
15.对于一个自动控制系统的性能要求可以概括为三个方面:
稳定性、__快速性__和准确性。
16.系统的传递函数完全由系统的结构和参数决定,与__输入量、扰动量__的形式无关。
17.决定二阶系统动态性能的两个重要参数是阻尼系数ξ和_无阻尼自然振荡频率wn。
18.设系统的频率特性G(jω)=R(ω)+jI(ω),则幅频特性|G(jω)|=R()()。
2wI2w
19.分析稳态误差时,将系统分为0型系统、I型系统、II型系统⋯,这是按开环传递函数
的__积分__环节数来分类的。
20.线性系统稳定的充分必要条件是它的特征方程式的所有根均在复平面的___左___部分。
21.ω从0变化到+∞时,惯性环节的频率特性极坐标图在____第四____象限,形状为___
半___圆。
22.用频域法分析控制系统时,最常用的典型输入信号是_正弦函数_。
23.二阶衰减振荡系统的阻尼比ξ的范围为01。
24.G(s)=
的环节称为___惯性__环节。
25.系统输出量的实际值与_输出量的希望值__之间的偏差称为误差。
26.线性控制系统其输出量与输入量间的关系可以用___线性微分__方程来描述。
27.稳定性、快速性和准确性是对自动控制系统性能的基本要求。
4/15
w
n
28.二阶系统的典型传递函数是22
s2wnswn
29.设系统的频率特性为G(j)R(j)jI(),则R()称为实频特性。
30.根据控制系统元件的特性,控制系统可分为__线性__控制系统、非线性_控制系统。
31.对于一个自动控制系统的性能要求可以概括为三个方面:
稳定性、快速性和_准确性__。
32.二阶振荡环节的谐振频率ωr与阻尼系数ξ的关系为ωr=ωn12
33.根据自动控制系统是否设有反馈环节来分类,控制系统可分为__开环_控制系统、_闭环
__控制系统。
34.用频率法研究控制系统时,采用的图示法分为极坐标图示法和__对数坐标_图示法。
35.二阶系统的阻尼系数ξ=__0.707____时,为最佳阻尼系数。
这时系统的平稳性与快速性
都较理想。
2n
三、设系统的闭环传递函数为Gc(s)=
222
ss
nn
,试求最大超调量σ%=9.6%、峰值
时间tp=0.2秒时的闭环传递函数的参数ξ和ωn的值。
解:
∵%e100%=9.6%
∴ξ=0.6
∵tp=
n1
=0.2
∴ωn=
tp1
3.14
0.210.6
19.6rad/s
四、设一系统的闭环传递函数为Gc(s)=
,试求最大超调量σ%=5%、调整
时间ts=2秒(△=0.05)时的闭环传递函数的参数ξ和ωn的值。
∵%e100%=5%
∴ξ=0.69
3
=2∵ts=
∴ωn=2.17rad/s
五、设单位负反馈系统的开环传递函数为
Gk(s)
6)
5/15
求
(1)系统的阻尼比ζ和无阻尼自然频率ωn;
(2)系统的峰值时间tp、超调量σ%、调整时间tS(△=0.02);
系统闭环传递函数
GB(s)
s6
2与标准形式对比,可知2w6,w25
故wn5,0.6
又dw1510.64
t
pw
d
4
0.785
0.6
%e100%e
100%
9.5%
sw
1.33
p
六、某系统如下图所示,试求其无阻尼自然频率ωn,阻尼比ζ,超调量σ%,峰值时间,
调整时间ts(△=0.02)。
对于上图所示系统,首先应求出其传递函数,化成标准形式,然后可用公式求出各项
特征量及瞬态响应指标。
100
X
o
ss50s41002
i
50s
0.02
s0.08
0.04
2与标准形式对比,可知2w0.08,w0.04
6/15
0.2rad/sn
0.2
%e
122
10.2
e
52.7%
10.21
16.03
44
t100s
0.20.2n
七、已知单位负反馈系统的开环传递函数如下:
GK(s)
求:
(1)试确定系统的型次v和开环增益K;
(2)试求输入为r(t)13t时,系统的稳态误差。
(1)将传递函数化成标准形式
50
s(0.5s
1)
可见,v=1,这是一个I型系统
开环增益K=50;
(2)讨论输入信号,r(t)13t,即A=1,B=3
AB13
根据表3—4,误差00.060.06
ssK
1KpV150
八、已知单位负反馈系统的开环传递函数如下:
s(0.1)(2ss
2ss
0.2)
(2)试求输入为
r(t)52t4t时,系统的稳态误差。
2100
2sssss
s(0.1)(0.2)(101)(5
可见,v=2,这是一个II型系统
开环增益K=100;
7/15
(2)讨论输入信号,
r(t)52t4t,即A=5,B=2,C=4
ABC524
根据表3—4,误差000.040.04
1KpKVa1100
九、已知单位负反馈系统的开环传递函数如下:
(0.2s
20
1)(0.1s
r(t)25t2t时,系统的稳态误差。
(1)该传递函数已经为标准形式
可见,v=0,这是一个0型系统
开环增益K=20;
r(t)25t2t,即A=2,B=5,C=2
根据表3—4,误差
A
B
C
1KKKa
pV
5
21
十、设系统特征方程为
4+2s3+3s2+4s+5=0
试用劳斯-赫尔维茨稳定判据判别该系统的稳定性。
用劳斯-赫尔维茨稳定判据判别,a4=1,a3=2,a2=3,a1=4,a0=5均大于零,且有
2400
1350
0240
0135
201
2314202
2342254141203
535(12)6004
所以,此系统是不稳定的。
8/15
十一、设系统特征方程为
4s3s2s
s61210
30
用劳斯-赫尔维茨稳定判据判别,a4=1,a3=6,a2=12,a1=10,a0=3均大于零,且有
61000
11230
06100
01123
601
6121106202
612106631011051203
333512153604
所以,此系统是稳定的。
十二、设系统特征方程为
s524
用劳斯-赫尔维茨稳定判据判别,a4=1,a3=5,a2=2,a1=4,a0=3均大于零,
且有
5400
1230
0540
0123
501
5214602
5245534145103
333(51)15304
9/15
十三、设系统特征方程为
3s2s
2s46
(1)用劳斯-赫尔维茨稳定判据判别,a3=2,a2=4,a1=6,a0=1均大于零,且有
410
2603
041
401
46212202
461440121603
十四、设系统开环传递函数如下,试绘制系统的对数幅频特性曲线。
s(0.02s
该系统开环增益K=30;
有一个积分环节,即v=1;
低频渐近线通过(1,20lg30)这点,斜率为-20dB/dec;
有一个惯性环节,对应转折频率为w50,斜率增加-20dB/dec。
系统对数幅频特性曲线如下所示。
L()/dB
20lg30
-20dB/dec
01
/(rad/s)
-40dB/dec
十五、设系统开环传递函数如下,试绘制系统的对数幅频特性曲线。
s(0.1s
1)(0.01s
该系统开环增益K=100;
低频渐近线通过(1,20lg100)这点,即通过(1,40)这
10/15
点斜率为-20dB/dec;
11
有两个惯性环节,对应转折频率为w10,w100,斜率分别增加
12
0.10.01
-20dB/dec
-20dB/dec40
(rad/s)
110100
-60dB/dec
十六、设系统开环传递函数如下,试绘制系统的对数幅频特性曲线。
G(s)0.1s1
该系统开环增益K=1;
无积分、微分环节,即v=0,低频渐近线通过(1,20lg1)这点,即通过(1,0)这点
斜率为0dB/dec;
有一个一阶微分环节,对应转折频率为10
w,斜率增加20dB/dec。
0.1
20dB/dec
10(rad/s)
十七、如下图所示,将方框图化简,并求出其传递函数。
11/15
12/15
13/15
十八、如下图所示,将方框图化简,并求出其传递函数。
H1
R(S)C(S)
一
G1G2
H2
H1/G2
R(S)G2C(S)
G1
1+G2H2
R(S)G1G2C(S)
1+G2H2+G1H1
14/15
十九、如下图所示,将方框图化简,并求出其传递函数。
G1G2G3一一
R(S)C(S)G1G2G3一一
G3
1+G2H1一
R(S)G1G2G3C(S)
1+G2H1+G1G2H1
15/15