先转了Word文档下载推荐.docx
《先转了Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《先转了Word文档下载推荐.docx(17页珍藏版)》请在冰豆网上搜索。
【4】一间囚房里关押着两个犯人。
每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。
起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。
后来他们找到了一个两全其美的办法:
一个人分汤,让另一个人先选。
于是争端就这么解决了。
可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。
必须寻找一个新的方法来维持他们之间的和平。
该怎么办呢?
按:
心理问题,不是逻辑问
题参考答案:
(可以将三个人排号1,2,3然后1分出汤的三分之一设为A,然后将剩下的三分之二让2或是3来分,假设为2来分,设为B,C然后2喝A,3在B,C中选,剩下的给1。
分析:
若1分出的A较多,则剩下的三分之二就较少,则1得到的必然较少;
若1分得的A较少,则2怀恨在胸,必然将剩下的三分之二分得不均匀,则3得到较多的,使得1得到较少的。
因此1和2都将把汤分得均匀。
此方案的弊端在于若1将A分成三分之一等分,而2对1有意见,将汤分的不均,则1将得到少的,可以每天轮流将1,2,3调换。
)
【5】在一张长方形的桌面上放了n个一样大小的圆形硬币。
这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;
当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。
请证明整个桌面可以用4n个硬币完全覆盖
【6】一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?
方法很多,看看谁的比较巧妙
(如上图所示,将球放在一水平面上,用一薄纸片平行放在球上,将一细线准确连接薄片和地面,然后将细线对折,此时细线的长度为球的半径,用直尺量取即可。
【7】五个大小相同的一元人民币硬币。
要求两两相接触,应该怎么摆?
【8】猜牌问题
S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:
红桃A、Q、4;
黑桃J、8、4、2、7、3;
草花K、Q、5、4、6;
方块A、5。
约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉P先生,把这张牌的花色告诉Q先生。
这时,约翰教授问P先生和Q先生:
你们能从已知的点数或花色中推知这张牌是什么牌吗?
于是,S先生听到如下的对话:
P先生:
我不知道这张牌。
Q先生:
我知道你不知道这张牌。
现在我知道这张牌了。
我也知道了。
听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
请问:
这张牌是什么牌?
(这张牌是方块5.应为P先生知道点数而Q先生直到花色,而P先生开始时说不知道这张牌,所以可以排除上面用线划出的牌,即没有相同点数的牌,而Q先生一开始就说他知道P先生不知道那张牌,所以可以排除该张牌的花色为黑桃和草花两种,因为如果是黑桃或是草花,当P先生知道的为划斜线的7张牌中的任意一张,P先生都有可能知道这张牌;
而接下来P先生说他知道这张牌了,则可排除该张牌为A的可能,因为P先生根据Q先生的话可以推断出这张牌的花色为红桃或是方块,若是A,则P先生还是不能肯定到底是红桃还是方块,所以可以排除A,那么就有可能是红桃Q、4或是方块5,但是接着Q先生说他知道这张牌了,假若这张牌是红桃Q或4,P先生猜的出但Q先生推不出,所以S先生推断出该张牌为方块5.)
【9】一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!
一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!
(每个人可以看见另两个数,但看不见自己的)
教授问第一个学生:
你能猜出自己的数吗?
回答:
不能,问第二个,不能,第三个,不能,再问第一个,不能,第二个,不能,第三个:
我猜出来了,是144!
教授很满意的笑了。
请问您能猜出另外两个人的数吗?
(第一个和第二个的数都为72,因为第一轮三个人都不能确定各自的数,第二轮第三个人能确定,若第一和第二个人的数是随便的,比如为100和44,此时假设第一个人的数加上的二个人的数等如144,则144加上44为188,144减去44为100,的一个人不能确定,144加上100为244,144减去100为44,第二个人不能确定,同理,100加上44为144,100减去44为56,第三个人也不能确定。
当第一和第二个人的数为72时,第一第二个人都无法确定,第三个人有两种结果,一个为0一个为144,但0不是正整数,所以为144.
此答案的破绽为,若第一第二为72那么第一轮第三个人就可以猜出来。
【10】某城市发生了一起汽车撞人逃跑事件
该城市只有两种颜色的车,蓝色15%绿色85%
事发时有一个人在现场看见了
他指证是蓝车
但是根据专家在现场分析,当时那种条件能看正确的可能性是80%
那么,肇事的车是蓝车的概率到底是多少?
【11】有一人有240公斤水,他想运往干旱地区赚钱。
他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。
假设水的价格在出发地为0,以后,与运输路程成正比,(即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必须安全返回,请问,他最多可赚多少钱?
参考答案:
(假设运往X公里处,显然每次运60公斤的利润最大,每次要安全会来,则在路上消耗的水为2X公斤,设一次所挣的钱为Y,那么Y=(60-2X)X,由二然一次方程可解的最的值在X=7.5处,Y的最大值为337.5,则最多能挣1350元。
【12】现在共有100匹马跟100块石头,马分3种,大型马;
中型马跟小型马。
其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。
问需要多少匹大马,中型马跟小型马?
(问题的关键是刚好必须是用完100匹马)
(假设大马X,中马Y,小马Z。
由题意可的:
X+Y+Z=100
3X+2Y+Z/2=100
解得:
5X+3Y=100
因为X,Y,Z都是整数,所以由上式可的几组不同的解:
<
1>
当X=2时,Y=30,Z=68
2>
当X=5时,Y=25,Z=70
3>
当X=8时,Y=20,Z=72
4>
当X=11时,Y=15,Z=74
5>
当X=14时,Y=10,Z=76
6>
当X=17时,Y=5,Z=78
7>
当X=20时,Y=0,Z=80
因此有以上7种结果。
【13】1=52=153=2154=2145那么5=?
【14】有2n个人排队进电影院,票价是50美分。
在这2n个人当中,其中n个人只有50美分,另外n个人有1美元(纸票子)。
愚蠢的电影院开始卖票时1分钱也没有。
问:
有多少种排队方法使得每当一个拥有1美元买票时,电影院都有50美分找钱
注:
1美元=100美分
拥有1美元的人,拥有的是纸币,没法破成2个50美分
【15】一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。
问他赚了多少?
【16】有一种体育竞赛共含M个项目,有运动员A,B,C参加,在每一项目中,第一,第二,第三名分别得X,Y,Z分,其中X,Y,Z为正整数且X>
Y>
Z。
最后A得22分,B与C均得9分,B在百米赛中取得第一。
求M的值,并问在跳高中谁得第二名。
(因为A得22分,B,C得9分;
而B在百米赛中取得第一,所以A不可能所有都是第一,先假设得M-1个第一,则:
A:
(M-1)*X+Y=22
B:
X+(M-1)*Z=9
C:
(M-1)*Y+Z=9
经过猜测可的M=5,X=5,Y=2,Z=1
则跳高的可能是A或是C。
【17】前提:
1有五栋五种颜色的房子
2每一位房子的主人国籍都不同
3这五个人每人只喝一种饮料,只抽一种牌子的香烟,只养一种宠物
4没有人有相同的宠物,抽相同牌子的香烟,喝相同的饮料
提示:
1 英国人住在红房子里
2 瑞典人养了一条狗
3 丹麦人喝茶
4 绿房子在白房子左边
5 绿房子主人喝咖啡
6 抽PALL MALL烟的人养了一只鸟
7 黄房子主人抽DUNHILL烟
8 住在中间那间房子的人喝牛奶
9 挪威人住第一间房子
10 抽混合烟的人住在养猫人的旁边
11 养马人住在抽DUNHILL烟的人旁边
12 抽BLUE MASTER烟的人喝啤酒
13 德国人抽PRINCE烟
14 挪威人住在蓝房子旁边
15 抽混合烟的人的邻居喝矿泉水
问题是:
谁养鱼?
?
【18】5个人来自不同地方,住不同房子,养不同动物,吸不同牌子香烟,喝不同饮料,喜欢不同食物。
根据以下线索确定谁是养猫的人。
1.红房子在蓝房子的右边,白房子的左边(不一定紧邻)
2.黄房子的主人来自香港,而且他的房子不在最左边。
3.爱吃比萨的人住在爱喝矿泉水的人的隔壁。
4.来自北京的人爱喝茅台,住在来自上海的人的隔壁。
5.吸希尔顿香烟的人住在养马人的右边隔壁。
6.爱喝啤酒的人也爱吃鸡。
7.绿房子的人养狗。
8.爱吃面条的人住在养蛇人的隔壁。
9.来自天津的人的邻居(紧邻)一个爱吃牛肉,另一个来自成都。
10.养鱼的人住在最右边的房子里。
11.吸万宝路香烟的人住在吸希尔顿香烟的人和吸“555”香烟的人的中间(紧邻)
12.红房子的人爱喝茶。
13.爱喝葡萄酒的人住在爱吃豆腐的人的右边隔壁。
14.吸红塔山香烟的人既不住在吸健牌香烟的人的隔壁,也不与来自上海的人相邻。
15.来自上海的人住在左数第二间房子里。
16.爱喝矿泉水的人住在最中间的房子里。
17.爱吃面条的人也爱喝葡萄酒。
18.吸“555”香烟的人比吸希尔顿香烟的人住的靠右
【19】斗地主附残局
地主手中牌2、K、Q、J、10、9、8、8、6、6、5、5、3、3、3、3、7、7、7、7
长工甲手中牌大王、小王、2、A、K、Q、J、10、Q、J、10、9、8、5、5、4、4
长工乙手中牌2、2、A、A、A、K、K、Q、J、10、9、9、8、6、6、4、4
三家都是明手,互知底牌。
要求是:
在三家都不打错牌的情况下,地主必须要么输要么赢。
哪方会赢?
【20】一楼到十楼的每层电梯门口都放着一颗钻石,钻石大小不一。
你乘坐电梯从一楼到十楼,每层楼电梯门都会打开一次,只能拿一次钻石,问怎样才能拿到最大的一颗?
【21】U2合唱团在17分钟内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。
一次同时最多可以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回桥两端。
手电筒是不能用丢的方式来传递的。
四个人的步行速度各不同,若两人同行则以较慢者的速度为准。
Bono需花1分钟过桥,Edge需花2分钟过桥,Adam需花5分钟过桥,Larry需花10分钟过桥。
他们要如何在17分钟内过桥呢?
【22】一个家庭有两个小孩,其中有一个是女孩,问另一个也是女孩的概率
(假定生男生女的概率一样)
【23】为什么下水道的盖子是圆的?
【24】有7克、2克砝码各一个,天平一只,如何只用这些物品三次将140克的盐分成50、90克各一份?
【25】芯片测试:
有2k块芯片,已知好芯片比坏芯片多.请设计算法从其中找出一片
好芯片,说明你所用的比较次数上限.
其中:
好芯片和其它芯片比较时,能正确给出另一块芯片是好还是坏.
坏芯片和其它芯片比较时,会随机的给出好或是坏。
【26】话说有十二个鸡蛋,有一个是坏的(重量与其余鸡蛋不同),现要求用天平称三次,称出哪个鸡蛋是坏的!
【27】100个人回答五道试题,有81人答对第一题,91人答对第二题,85人答对第三题,79人答对第四题,74人答对第五题,答对三道题或三道题以上的人算及格,那么,在这100人中,至少有()人及格。
【28】陈奕迅有首歌叫十年
吕珊有首歌叫3650夜
那现在问,十年可能有多少天?
【29】
1
11
21
1211
111221
下一行是什么?
【30】烧一根不均匀的绳要用一个小时,如何用它来判断半个小时?
烧一根不均匀的绳,从头烧到尾总共需要1个小时。
现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?
(微软的笔试题)
【31】共有三类药,分别重1g,2g,3g,放到若干个瓶子中,现在能确定每个瓶子中只有其中一种药,且每瓶中的药片足够多,能只称一次就知道各个瓶子中都是盛的哪类药吗?
如果有4类药呢?
5类呢?
N类呢(N可数)?
如果是共有m个瓶子盛着n类药呢(m,n为正整数,药的质量各不相同但各种药的质量已知)?
你能只称一次就知道每瓶的药是什么吗?
当然是有代价的,称过的药我们就不用了
【32】假设在桌上有三个密封的盒,一个盒中有2枚银币(1银币=10便士),一个盒中有2枚镍币(1镍币=5便士),还有一个盒中有1枚银币和1枚镍币。
这些盒子被标上10便士、15便士和20便士,但每个标签都是错误的。
允许你从一个盒中拿出1枚硬币放在盒前,看到这枚硬币,你能否说出每个盒内装的东西呢?
【33】有一个大西瓜,用水果刀平整地切,总共切9刀,最多能切成多少份,最少能切成多少份?
主要是过程,结果并不是最重要的
【34】一个巨大的圆形水池,周围布满了老鼠洞。
猫追老鼠到水池边,老鼠未来得及进洞就掉入水池里。
猫继续沿水池边缘企图捉住老鼠(猫不入水)。
已知V猫=4V鼠。
问老鼠是否有办法摆脱猫的追逐?
【35】有三个桶,两个大的可装8斤的水,一个小的可装3斤的水,现在有16斤水装满了两大桶就是8斤的桶,小桶空着,如何把这16斤水分给4个人,每人4斤。
没有其他任何工具,4人自备容器,分出去的水不可再要回来。
【36】从前有一位老钟表匠,为一个教堂装一只大钟。
他年老眼花,把长短针装配错了,短针走的速度反而是长针的12倍。
装配的时候是上午6点,他把短针指在“6”上,长针指在“12”上。
老钟表匠装好就回家去了。
人们看这钟一会儿7点,过了不一会儿就8点了,都很奇怪,立刻去找老钟表匠。
等老钟表匠赶到,已经是下午7点多钟。
他掏出怀表来一对,钟准确无误,疑心人们有意捉弄他,一生气就回去了。
这钟还是8点、9点地跑,人们再去找钟表匠。
老钟表匠第二天早晨8点多赶来用表一对,仍旧准确无误。
请你想一想,老钟表匠第一次对表的时候是7点几分?
第二次对表又是8点几分?
【37】今有2匹马、3头牛和4只羊,它们各自的总价都不满10000文钱(古时的货币单位)。
如果2匹马加上1头牛,或者3头牛加上1只羊,或者4只羊加上1匹马,那么它们各自的总价都正好是10000文钱了。
马、牛、羊的单价各是多少文钱?
【38】一天,harlan的店里来了一位顾客,挑了25元的货,顾客拿出100元,harlan没零钱找不开,就到隔壁飞白的店里把这100元换成零钱,回来给顾客找了75元零钱。
过一会,飞白来找harlan,说刚才的是假钱,harlan马上给飞白换了张真钱,问harlan赔了多少钱?
【39】猴子爬绳
这道力学怪题乍看非常简单,可是据说它却使刘易斯.卡罗尔感到困惑。
至于这道
怪题是否由这位因《爱丽丝漫游奇境记》而闻名的牛津大学数学专家提出来的,那就不
清楚了。
总之,在一个不走运的时刻,他就下述问题征询人们的意见:
一根绳子穿过无摩擦力的滑轮,在其一端悬挂着一只10磅重的砝码,绳子的另一端
有只猴子,同砝码正好取得平衡。
当猴子开始向上爬时,砝码将如何动作呢?
真奇怪,"
卡罗尔写道,"
许多优秀的数学家给出了截然不同的答案。
普赖斯认为砝
码将向上升,而且速度越来越快。
克利夫顿(还有哈考特)则认为,砝码将以与猴子一样
的速度向上升起,然而桑普森却说,砝码将会向下降!
一位杰出的机械工程师说"
这不会比苍蝇在绳子上爬更起作用"
,而一位科学家却认
为"
砝码的上升或下降将取决于猴子吃苹果速度的倒数"
,然而还得从中求出猴子尾巴的
平方根。
严肃地说,这道题目非常有趣,值得认真推敲。
它很能说明趣题与力学问题之
间的紧密联系。
【40】两个空心球,大小及重量相同,但材料不同。
一个是金,一个是铅。
空心球表面图有相同颜色的油漆。
现在要求在不破坏表面油漆的条件下用简易方法指出哪个是金的,哪个是铅的。
【41】有23枚硬币在桌上,10枚正面朝上。
假设别人蒙住你的眼睛,而你的手又摸不出硬币的
反正面。
让你用最好的方法把这些硬币分成两堆,每堆正面朝上的硬币个数相同。
【42】三个村庄A、B、C和三个城镇A、B、C坐落在如图所示的环形山内。
由于历史原因,只有同名的村与镇之间才有来往。
为方便交通,他们
准备修铁路。
如何在这个环形山内修三条铁路连通A村与A镇,
B村与B镇,C村与C镇。
而这些铁路相互不能相交。
(挖山洞、修立交
桥都不算,绝对是平面问题)。
想出答案再想想这个题说明什么问题。
●●●●●●●●●C●●●●●●●●●●
●
●
●
ACB
●●●●●●●●●●●●●●●●●●●●43】屋里三盏灯,屋外三个开关,一个开关仅控制一盏灯,屋外看不到屋里
怎样只进屋一次,就知道哪个开关控制哪盏灯?
四盏呢~
【44】2+7-2+7全部有火柴根组成,移动其中任何一根,答案要求为30
说明:
因为书写问题作如下解释,2是由横折横三根组成,7是由横折两根组成
【45】5名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。
这是一些讲民主的海盗(当然是他们自己特有的民主),他们的习惯
是按下面的方式进行分配:
最厉害的一名海盗提出分配方案,然后所有的海盗(包
括提出方案者本人)就此方案进行表决。
如果50%或更多的海盗赞同此方案,此方
案就获得通过并据此分配战利品。
否则提出方案的海盗将被扔到海里,然后下一名
最厉害的海盗又重复上述过程。
所有的海盗都乐于看到他们的一位同伙被扔进海里,不过,如果让他们选择的
话,他们还是宁可得一笔现金。
他们当然也不愿意自己被扔到海里。
所有的海盗都
是有理性的,而且知道其他的海盗也是有理性的。
此外,没有两名海盗是同等厉害
的——这些海盗按照完全由上到下的等级排好了座次,并且每个人都清楚自己和其
他所有人的等级。
这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗
都不相信他的同伙会遵守关于共享金块的安排。
这是一伙每人都只为自己打算的海
盗。
最凶的一名海盗应当提出什么样的分配方案才能使他获得最多的金子呢?
【46】他们中谁的存活机率最大?
5个囚犯,分别按1-5号在装有100颗绿豆的麻袋抓绿豆,规定每人至少抓一颗,而抓得最多和最少的人将被处死,而且,他们之间不能交流,但在抓的时候,可以摸出剩下的豆子数。
问他们中谁的存活几率最大?
1,他们都是很聪明的人
2,他们的原则是先求保命,再去多杀人
3,100颗不必都分完
4,若有重复的情况,则也算最大或最小,一并处死
【47】有5只猴子在海边发现一堆桃子,决定第二天来平分.第二天清晨,第一只猴子最早来到,它左分右分分不开,就朝海里扔了一只,恰好可以分成5份,它拿上自己的一份走了.第2,3,4,5只猴子也遇到同样的问题,采用了同样的方法,都是扔掉一只后,恰好可以分成5份.问这堆桃子至少有多少只?
【48】话说某天一艘海盗船被天下砸下来的一头牛给击中了,5个倒霉的家伙只好逃难到一个孤岛,发现岛上孤零零的,幸好有有棵椰子树,还有一只猴子!
大家把椰子全部采摘下来放在一起,但是天已经很晚了,所以就睡觉先.
晚上某个家伙悄悄的起床,悄悄的将椰子分成5份,结果发现多一个椰子,顺手就给了幸运的猴子,然后又悄悄的藏了一份,然后把剩下的椰子混在一起放回原处,最后还是悄悄滴回去睡觉了.
过了会儿,另一个家伙也悄悄的起床,悄悄的将剩下的椰子分成5份,结果发现多一个椰子,顺手就又给了幸运的猴子,然后又悄悄滴藏了一份,把剩下的椰子混在一起放回原处,最后还是悄悄滴回去睡觉了.
又过了一会...
...
总之5个家伙都起床过,都做了一样的事情
早上大家都起床,各自心怀鬼胎的分椰子了,这个猴子还真不是一般的幸运,因为这次把椰子分成5分后居然还是