高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教师用书 文 新人教A版Word文件下载.docx

上传人:b****8 文档编号:22622111 上传时间:2023-02-04 格式:DOCX 页数:16 大小:78.49KB
下载 相关 举报
高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教师用书 文 新人教A版Word文件下载.docx_第1页
第1页 / 共16页
高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教师用书 文 新人教A版Word文件下载.docx_第2页
第2页 / 共16页
高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教师用书 文 新人教A版Word文件下载.docx_第3页
第3页 / 共16页
高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教师用书 文 新人教A版Word文件下载.docx_第4页
第4页 / 共16页
高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教师用书 文 新人教A版Word文件下载.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教师用书 文 新人教A版Word文件下载.docx

《高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教师用书 文 新人教A版Word文件下载.docx》由会员分享,可在线阅读,更多相关《高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教师用书 文 新人教A版Word文件下载.docx(16页珍藏版)》请在冰豆网上搜索。

高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教师用书 文 新人教A版Word文件下载.docx

①集合的关系及其基本运算;

②全称命题、特称命题、含逻辑联结词命题真假的判断;

③充分条件,必要条件的判断.

[导学心语]

根据近5年的全国卷高考命题特点和规律,复习本章时,要注意以下几个方面:

1.全面系统复习,深刻理解知识本质

(1)重视对集合相关概念的理解,深刻理解集合、空集、五个特殊集合的表示及子集、交集、并集、补集等概念,弄清集合元素的特征及其表示方法.

(2)重视充分条件、必要条件的判断,弄清四种命题的关系.

(3)重视含逻辑联结词命题真假的判断,掌握特称命题、全称命题否定的含义.

2.熟练掌握解决以下问题的方法和规律

(1)子集的个数及判定问题.

(2)集合的运算问题.

(3)充分条件、必要条件的判断问题.

(4)含逻辑联结词命题的真假判断问题.

(5)特称命题、全称命题的否定问题.

3.重视数学思想方法的应用

(1)数形结合思想:

解决有关集合的运算问题时,可利用Venn图或数轴更直观地求解.

(2)转化与化归思想:

通过运用原命题和其逆否命题的等价性,进行恰当转化,巧妙判断命题的真假.

第一节 集 合

————————————————————————————————

[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;

能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;

在具体情境中,了解全集与空集的含义.3.

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合间的基本关系及集合的基本运算.

1.元素与集合

(1)集合中元素的三个特性:

确定性、互异性、无序性.

(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.

(3)集合的三种表示方法:

列举法、描述法、Venn图法.

2.集合间的基本关系

(1)子集:

若对∀x∈A,都有x∈B,则A⊆B或B⊇A.

(2)真子集:

若A⊆B,但∃x∈B,且x∉A,则AB或BA.

(3)相等:

若A⊆B,且B⊆A,则A=B.

(4)空集的性质:

∅是任何集合的子集,是任何非空集合的真子集.

3.集合的基本运算

并集

交集

补集

图形表示

符号表示

A∪B

A∩B

∁UA

意义

{x|x∈A或x∈B}

{x|x∈A且x∈B}

{x|x∈U且x∉A}

4.集合关系与运算的常用结论

(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.

(2)子集的传递性:

A⊆B,B⊆C⇒A⊆C.

(3)A⊆B⇔A∩B=A⇔A∪B=B.

(4)∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).

1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×

”)

(1)任何集合都有两个子集.(  )

(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.(  )

(3)若{x2,1}={0,1},则x=0,1.(  )

(4)若A∩B=A∩C,则B=C.(  )

[解析] 

(1)错误.空集只有一个子集,就是它本身,故该说法是错误的.

(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);

集合B是函数y=x2的值域,即B=[0,+∞);

集合C是抛物线y=x2上的点集.因此A,B,C不相等.

(3)错误.当x=1时,不满足互异性.

(4)错误.当A=∅时,B,C可为任意集合.

[答案] 

(1)×

 

(2)×

 (3)×

 (4)×

2.(教材改编)若集合A={x∈N|x≤

},a=2

,则下列结论正确的是

(  )

A.{a}⊆AB.a⊆A

C.{a}∈AD.a∉A

D [由题意知A={0,1,2,3},由a=2

,知a∉A.]

3.(2016·

全国卷Ⅰ)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=(  )

A.{1,3}B.{3,5}

C.{5,7}D.{1,7}

B [集合A与集合B的公共元素有3,5,故A∩B={3,5},故选B.]

4.(2016·

全国卷Ⅲ)设集合A={0,2,4,6,8,10},B={4,8},则∁AB=(  )

A.{4,8} B.{0,2,6}

C.{0,2,6,10}D.{0,2,4,6,8,10}

C [∵集合A={0,2,4,6,8,10},B={4,8},

∴∁AB={0,2,6,10}.]

5.已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A∩B的元素个数为________.

2 [集合A表示圆心在原点的单位圆上的点,集合B表示直线y=x上的点,易知直线y=x和圆x2+y2=1相交,且有2个交点,故A∩B中有2个元素.]

集合的基本概念

 

(1)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是(  )

A.1    B.3    

C.5    D.9

(2)若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=(  )

A.

B.

C.0D.0或

(1)C 

(2)D [

(1)当x=0,y=0,1,2时,x-y=0,-1,-2;

当x=1,y=0,1,2时,x-y=1,0,-1;

当x=2,y=0,1,2时,x-y=2,1,0.

根据集合中元素的互异性可知,B的元素为-2,-1,0,1,2,共5个.

(2)若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.

当a=0时,x=

,符合题意;

当a≠0时,由Δ=(-3)2-8a=0得a=

所以a的取值为0或

.]

[规律方法] 1.研究集合问题,首先要抓住元素,其次看元素应满足的属性;

特别地,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性,如题

(1).

2.由于方程的不定性导致求解过程用了分类讨论思想,如题

(2).

[变式训练1] 已知集合A={x∈R|ax2+3x-2=0},若A=∅,则实数a的取值范围为________.【导学号:

31222001】

 [∵A=∅,∴方程ax2+3x-2=0无实根,

不合题意;

当a≠0时,Δ=9+8a<0,∴a<-

集合间的基本关系

 

(1)已知集合A={x|y=

,x∈R},B={x|x=m2,m∈A},则(  )

A.ABB.BA

C.A⊆BD.B=A

(2)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范围是________.

(1)B 

(2)(-∞,4] [

(1)易知A={x|-1≤x≤1},

所以B={x|x=m2,m∈A}={x|0≤x≤1},

因此BA.

(2)当B=∅时,有m+1≥2m-1,则m≤2.

当B≠∅时,若B⊆A,如图.

解得2<m≤4.

综上,m的取值范围为m≤4.]

[规律方法] 1.B⊆A,应分B=∅和B≠∅两种情况讨论.

2.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn图化抽象为直观进行求解.

[变式训练2] 

(1)(2017·

长沙雅礼中学质检)若集合A={x|x>0},且B⊆A,则集合B可能是(  )

A.{1,2}B.{x|x≤1}

C.{-1,0,1}D.R

(2)(2017·

湖南师大附中模拟)已知集合A={x|

,x∈R},B={1,m},若A⊆B,则m的值为(  )【导学号:

31222000】

A.2B.-1

C.-1或2D.2或

(1)A 

(2)A [

(1)因为A={x|x>0},且B⊆A,再根据选项A,B,C,D可知选项A正确.

(2)由

,得x=2,则A={2}.

因为B={1,m},且A⊆B,

所以m=2.]

集合的基本运算

角度1 求集合的交集或并集

 

(1)(2015·

全国卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为(  )

A.5     B.4     C.3     D.2

郑州调研)设集合M={x|x2=x},

N={x|lgx≤0},则M∪N=(  )

A.[0,1]B.(0,1]

C.[0,1)D.(-∞,1]

(1)D 

(2)A [

(1)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.共2个元素.

(2)M={x|x2=x}={0,1},N={x|lgx≤0}={x|0<

x≤1},M∪N=[0,1].]

角度2 集合的交、并、补的混合运算

 

(1)(2016·

山东高考)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=(  )

A.{2,6}B.{3,6}

C.{1,3,4,5}D.{1,2,4,6}

太原一模)已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则阴影部分(如图111)表示的集合是(  )

图111

A.[-1,1)B.(-3,1]

C.(-∞,-3)∪[-1,+∞)D.(-3,-1)

(1)A 

(2)D [

(1)∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5}.

又U={1,2,3,4,5,6},∴∁U(A∪B)={2,6}.

(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁UN)=(-3,-1).]

[规律方法] 1.求集合的交集和并集时首先应明确集合中元素的属性,然后利用交集和并集的定义求解.

2.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;

集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.

易错警示:

在解决有关A∩B=∅,A⊆B等集合问题时,往往忽视空集的情况,一定要先考虑∅是否成立,以防漏解.

[思想与方法]

1.在解题时经常用到集合元素的互异性,一方面利用集合元素的互异性能顺利找到解题的切入点;

另一方面,对求出的字母的值,应检验是否满足集合元素的互异性,以确保答案正确.

2.求集合的子集(真子集)个数问题,需要注意的是:

首先,过好转化关,即把图形语言转化为符号语言;

其次,当集合的元素个数较少时,常利用枚举法解决.

3.对于集合的运算,常借助数轴、Venn图求解.

(1)对连续数集间的运算,借助数轴的直观性,进行合理转化;

对已知连续数集间的关系,求其中参数的取值范围,关键在于转化成关于参数的方程或不等式关系.

(2)对离散的数集间的运算,或抽象集合间的运算,可借助Venn图,这是数形结合思想的又一体现.

[易错与防范]

1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.

2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,以防漏解.

3.解题时注意区分两大关系:

一是元素与集合的从属关系;

二是集合与集合的包含关系.

4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.

课时分层训练

(一) 集 合

A组 基础达标

(建议用时:

30分钟)

一、选择题

1.(2016·

全国卷Ⅱ)已知集合A={1,2,3},B={x|x2<9},则A∩B=(  )

A.{-2,-1,0,1,2,3}   B.{-2,-1,0,1,2}

C.{1,2,3}D.{1,2}

D [∵x2<9,∴-3<x<3,∴B={x|-3<x<3}.

又A={1,2,3},

∴A∩B={1,2,3}∩{x|-3<x<3}={1,2}.]

2.(2015·

全国卷Ⅱ)已知集合A={1,2,3},B={2,3},则(  )

A.A=B       B.A∩B=∅

C.ABD.BA

D [∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴BA.]

3.(2017·

潍坊模拟)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为(  )【导学号:

31222002】

A.1    B.2    

C.3    D.4

D [由x2-3x+2=0,得x=1或x=2,

∴A={1,2}.

由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.]

山东高考)设集合A={y|y=2x,x∈R},B={x|x2-1<

0},则A∪B=(  )

A.(-1,1)B.(0,1)

C.(-1,+∞)D.(0,+∞)

C [由已知得A={y|y>

0},B={x|-1<

x<

1},则A∪B={x|x>

-1}.]

5.(2017·

衡水模拟)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁UB=(  )

A.{2,5}B.{3,6}

C.{2,5,6}D.{2,3,5,6,8}

A [由题意得∁UB={2,5,8},

∴A∩∁UB={2,3,5,6}∩{2,5,8}={2,5}.]

6.若x∈A,则

∈A,就称A是伙伴关系集合,集合M=

的所有非空子集中具有伙伴关系的集合的个数是(  )【导学号:

31222003】

A.1B.3

C.7D.31

B [具有伙伴关系的元素组是-1,

,2,所以具有伙伴关系的集合有3个:

{-1},

7.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=(  )

A.{x|x≥0}B.{x|x≤1}

C.{x|0≤x≤1}D.{x|0<

1}

D [∵A={x|x≤0},B={x|x≥1},

∴A∪B={x|x≤0或x≥1},在数轴上表示如图,

∴∁U(A∪B)={x|0<x<1}.]

二、填空题

8.已知A={0,m,2},B={x|x4-4x2=0},若A=B,则m=________.

-2 [由题知B={0,-2,2},A={0,m,2},若A=B,则m=-2.]

9.(2016·

天津高考)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=________.

{1,4} [因为集合B中,x∈A,所以当x=1时,y=3-2=1;

当x=2时,y=3×

2-2=4;

当x=3时,y=3×

3-2=7;

当x=4时,y=3×

4-2=10.

即B={1,4,7,10}.

又因为A={1,2,3,4},所以A∩B={1,4}.]

10.集合A={x|x<0},B={x|y=lg[x(x+1)]},若A-B={x|x∈A,且x∉B},则A-B=________.

[-1,0) [由x(x+1)>0,得x<-1或x>0,

∴B=(-∞,-1)∪(0,+∞),

∴A-B=[-1,0).]

B组 能力提升

15分钟)

全国卷Ⅲ改编)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则(∁RS)∩T=(  )

A.[2,3]B.(-∞,-2]∪[3,+∞)

C.(2,3)D.(0,+∞)

C [易知S=(-∞,2]∪[3,+∞),∴∁RS=(2,3).

∴(∁RS)∩T=(2,3).]

2.(2017·

郑州调研)设全集U=R,A={x|x2-2x≤0},B={y|y=cosx,x∈R},则图112中阴影部分表示的区间是(  )

图112

A.[0,1]

B.(-∞,-1]∪[2,+∞)

C.[-1,2]

D.(-∞,-1)∪(2,+∞)

D [A={x|x2-2x≤0}=[0,2],B={y|y=cosx,x∈R}=[-1,1].

图中阴影部分表示∁U(A∪B)=(-∞,-1)∪(2,+∞).]

3.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.【导学号:

31222004】

(-∞,-2] [由4≤2x≤16,得2≤x≤4,则A=[2,4],又B=[a,b],且A⊆B.

∴a≤2,b≥4,故a-b≤2-4=-2.

因此a-b的取值范围是(-∞,-2].]

4.设集合A={x|x2-x-6<0},B={x|x-a≥0}.若存在实数a,使得A∩B={x|0≤x<3},则A∪B=________.

{x|x>-2} [A={x|-2<x<3},B={x|x≥a}.

如图,由A∩B={x|0≤x<3},得a=0,A∪B={x|x>-2}.]

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 中国风

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1