整式的乘除培优辅导全文档格式.docx

上传人:b****7 文档编号:22605880 上传时间:2023-02-04 格式:DOCX 页数:43 大小:175.42KB
下载 相关 举报
整式的乘除培优辅导全文档格式.docx_第1页
第1页 / 共43页
整式的乘除培优辅导全文档格式.docx_第2页
第2页 / 共43页
整式的乘除培优辅导全文档格式.docx_第3页
第3页 / 共43页
整式的乘除培优辅导全文档格式.docx_第4页
第4页 / 共43页
整式的乘除培优辅导全文档格式.docx_第5页
第5页 / 共43页
点击查看更多>>
下载资源
资源描述

整式的乘除培优辅导全文档格式.docx

《整式的乘除培优辅导全文档格式.docx》由会员分享,可在线阅读,更多相关《整式的乘除培优辅导全文档格式.docx(43页珍藏版)》请在冰豆网上搜索。

整式的乘除培优辅导全文档格式.docx

(-x)n+2(n为正整数).

培优训练

(二)

重庆中考)计算(ab)2的结果是()

(A)2ab(B)a2b(C)a2b2(D)ab2

2.下列运算中,正确的是()

(A)3a2-a2=2(B)(-a2b)3=a6b3(C)a3·

a6=a9(D)(2a2)2=2a4

3.已知一个正方体的棱长为2×

102毫米,则这个正方体的体积为()

(A)6×

106立方毫米(B)8×

106立方毫米(C)2×

106立方毫米(D)8×

105立方毫米

4.已知22×

83=2n,则n的值为______.

5.若2x+y=3,则4x×

2y=______.

6.计算:

(1)[(

)6×

(-

)6]7=________.

(2)82013×

(-0.125)2012=______.

7.(8分)已知x-y=a,试求(x-y)3·

(2x-2y)3·

(3x-3y)3的值.

8.(8分)比较3555,4444,5333的大小.

9.(10分)阅读材料:

一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b.

例如,因为54=625,所以log5625=4;

因为32=9,所以log39=2.

对数有如下性质:

如果a>0,且a≠1,M>0,N>0,那么loga(MN)=logaM+logaN.

完成下列各题

(1)因为______,所以log28=_______;

(2)因为______,所以log216=______;

(3)计算:

log2(8×

16)=_______+_______=_______.

培优训练(三)

江西中考)下列运算正确的是()

(A)a3+a3=2a6(B)a6÷

a-3=a3

(C)a3·

a3=2a3(D)(-2a2)3=-8a6

2.和3-2的结果相同的数是()

(A)-6(B)9的相反数

(C)9的绝对值(D)9的倒数

东营中考)若3x=4,9y=7,则3x-2y的值为()

(B)

(C)-3(D)

4.(2014·

滨州中考)根据你学习的数学知识,写出一个运算结果为a6的算式_____.

5.根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:

E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的______倍.

a-1·

a-2÷

a-3=_____.

7.(8分)用小数或分数表示下列各数:

(1)4-3×

20130;

(2)6.29×

10-3.

8.(8分)小丽在学习了“除零以外的任何数的零次幂的值为1”后,遇到这样一道题:

“如果(x-2)x+3=1,求x的值”,她解答出来的结果为x=-3.老师说她考虑的问题不够全面,你能帮助小丽解答这个问题吗?

9.(10分)

(1)通过计算比较下列各式中两数的大小:

(填“>”“<”或“=”).

①1-2_____2-1;

②2-3_____3-2;

③3-4_____4-3;

④4-5_____5-4;

….

(2)由

(1)可以猜测n-(n+1)与(n+1)-n(n为正整数)的大小关系:

当n______时,n-(n+1)>(n+1)-n;

当n______时,n-(n+1)<

(n+1)-n.

培优训练(四)

1.某种细胞的直径是5×

10-4毫米,这个数是()

(A)0.05毫米(B)0.005毫米(C)0.0005毫米(D)0.00005毫米

2.(2014·

大庆中考)科学家测得肥皂泡的厚度约为0.0000007米,用科学记数法表示为()

(A)0.7×

10-6米(B)0.7×

10-7米(C)7×

10-7米(D)7×

10-6米

3.小聪在用科学记数法记录一个较小的数时,多数了2个零,结果错误地记成4.03×

10-8,正确的结果应是()

(A)4.03×

106(B)4.03×

10-6(C)4.03×

1010(D)4.03×

10-10

玉林中考)某种原子直径为1.2×

10-2纳米,把这个数化为小数是_____纳米.

5.(2014·

本溪中考)已知1纳米=10-9米,某种微粒的直径为158纳米,用科学记数法表示该微粒的直径为_____.

6.1本100页的书大约厚0.5cm,则书的一页厚约______m(用科学记数法表示).

7.(8分)某种计算机的存储器完成一次存储的时间为十亿分之一秒,则该存储器用百万分之一秒可以完成多少次存储?

8.(8分)在显微镜下,人体的一种细胞形状可以近似地看成圆形,它的半径为7.8×

10-7米,它相当于多少微米?

若1张百元人民币约0.00009米厚,那么它相当于约多少个这种细胞首尾相接的长度?

9.(10分)1微米相当于一根头发直径的六十分之一,一根头发的直径大约为多少米?

一根头发的横断面的面积为多少平方米?

一般人约有10万根头发,把这些头发捆起来的横断面约有多少平方米(π取3.14)?

培优训练(五)

沈阳中考)计算(2a)3·

a2的结果是()

(A)2a5(B)2a6(C)8a5(D)8a6

2.下列运算正确的是()

(A)|-3|=3(B)-(-

)=-

(C)(a3)2=a5(D)2a·

3a=6a

3.如果-2m2×

□=-8m2n3,则□内应填的代数式是()

(A)6n3(B)4n3(C)-6n3(D)4m2n3

4.计算:

(-2x)3·

(-5xy2)=______.

5.已知xm+1yn-2·

xmy2=x5y3,那么mn的值是______.

6.如图,沿正方形的对角线对折,把对折后重合的两个小正方形内的单项式相乘,乘积是_____(只要求写出一个结论).

7.(8分)若1+2+3+…+n=m,

求(abn)·

(a2bn-1)…(an-1b2)·

(anb)的值.

8.(8分)用18个棱长为a的正方体木块拼成一个长方体,有几种不同的拼法,分别表示你所拼成的长方体的体积,不同的拼法中,你能得到什么结论(至少用两种方法)?

9.(10分)已知三角

表示2abc,方框

表示(-3xzw)y,求

×

.

培优训练(六)

1.今天数学课上,老师讲了单项式乘以多项式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:

-3xy·

(4y-2x-1)=-12xy2+6x2y+_____.空格的地方被钢笔水弄污了,你认为横线上应填写()

(A)3xy(B)-3xy(C)-1(D)1

2.要使(x2+ax+1)(-6x3)的展开式中不含x4的项,则a应等于()

(A)6(B)-1(C)

(D)0

3.a2(-a+b-c)与-a(a2-ab+ac)的关系是()

(A)相等(B)互为相反数C)前式是后式的-a倍D)前式是后式的a倍

-2a(b2+ab)+(a2+b)b=_______.

5.若2x(x-1)-x(2x+3)=15,则x=_____.

6.如图所示图形的面积可表示的代数恒等式是______.

7.(8分)某同学在计算一个多项式乘以-3x2时,因抄错运算符号,算成了加上-3x2,得到的结果是x2-4x+1,那么正确的计算结果是多少?

8.(8分)已知某长方形的长为(a+b)cm,它的宽比长短(a-b)cm,求这个长方形的周长与面积.

9.(10分)一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高

a米.

(1)求防洪堤坝的横断面面积;

(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?

培优训练(七)

1.下列计算中,正确的有()

①(2a-3)(3a-1)=6a2-11a+3;

②(m+n)(n+m)=m2+mn+n2;

③(a-2)(a+3)=a2-6;

④(1-a)(1+a)=1-a2.

(A)4个(B)3个(C)2个(D)1个

2.已知(x+a)(x+b)=x2-13x+36,则a+b的值是()

(A)13(B)-13(C)36(D)-36

3.一个三角形的一边长为m+2,这条边上的高比它长m,则这个三角形的面积

为()

(A)2m2+6m+4(B)m2+3m+2(C)m+2(D)

m+1

4.已知a2-a+5=0,则(a-3)(a+2)的值是_____.

5.将一个长为x、宽为y的长方形的长增加1、宽减少1得到的新长方形的面积是_____.

6.有若干张如图所示的A类、B类正方形卡片和C类长方形卡片,如果要拼成一个长为3a+b,宽为a+2b的大长方形,则需要C类卡片_____张.

7.(8分)说明:

对于任意的正整数n,代数式n(n+7)-(n+3)(n-2)的值总能被6整除.

8.(8分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.

(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式______;

(2)试写出一个与

(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.

9.(10分)观察下列等式:

12×

231=132×

21,

13×

341=143×

31,

23×

352=253×

32,

34×

473=374×

43,

62×

286=682×

26,

……

以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.

(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:

①52×

_____=_____×

25;

②_____×

396=693×

_____.

(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并说明其正确性.

培优训练(八)

1.计算(3a-b)(-3a-b)等于()

(A)9a2-6ab-b2(B)-9a2-6ab-b2(C)b2-9a2(D)9a2-b2

2.由m(a+b+c)=ma+mb+mc①,可得:

(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2)=a3+b3②.我们把等式②叫做多项式乘法的立方公式.下列应用这个立方公式进行的变形不正确的是()

(A)(x+4y)(x2-4xy+16y2)=x3+64y3(B)(2x+y)(4x2-2xy+y2)=8x3+y3

(C)(a+1)(a2+a+1)=a3+1(D)x3+27=(x+3)(x2-3x+9)

3.下列各式中,计算结果为81-x2的是()

(A)(x+9)(x-9)(B)(x+9)(-x-9)(C)(-x+9)(-x-9)(D)(-x-9)(x-9)

4.当x=3,y=1时,代数式(x+y)(x-y)+y2的值是______.

5.如果(a+b+1)(a+b-1)=63,那么a+b的值为______.

6.观察下列各式:

(x-1)(x+1)=x2-1,

(x-1)(x2+x+1)=x3-1,

(x-1)(x3+x2+x+1)=x4-1,

根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=_____(其中n为正整数).

7.(8分)a,b,c是三个连续的正整数(a<b<c),以b为边长作正方形,分别以c,a为长和宽作长方形,哪个图形的面积大?

为什么?

8.(8分)如图所示,小明家有一块L型的菜地,要把L型的菜地按图中所示的样子分成面积相等的两个梯形,种上不同的蔬菜,已知这两个梯形的上底都是a米,下底都是b米,高是(b-a)米.请你给小明家算一算,小明家的菜地的面积是多大?

当a=10米,b=30米时,面积是多少?

9.(10分)两个连续偶数的平方差能被4整除吗?

培优训练(九)

1.化简:

(a+1)2-(a-1)2=()

(A)2(B)4(C)4a(D)2a2+2

2.一个正方形的边长增加了3cm,它的面积增加了51cm2,这个正方形原来的边长是()

(A)5cm(B)6cm(C)7cm(D)8cm

3.计算5a(2-5a)-(5a+1)(-5a+1)的结果是()

(A)1-10a+50a2(B)1-10a(C)10a-50a2-1(D)10a-1

4.

=______.

5.为了便于直接应用平方差公式计算,应将(a+b-c)·

(a-b+c)变形为[a______][a______].

6.(2014·

万宁中考)观察下列各式,探索发现规律:

22-1=1=1×

3;

42-1=15=3×

5;

62-1=35=5×

7;

82-1=63=7×

9;

102-1=99=9×

11;

用含正整数n的等式表示你所发现的规律为______.

7.(8分)利用平方差公式计算:

(1)31×

29.

(2)9.9×

10.1.

8.(8分)计算:

(1)4x2-(2x+3)(-2x-3).

(2)(3ab+

)(3ab-

)-a2b2.

9.(10分)阅读下列材料:

某同学在计算3×

(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:

(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)·

(22+1)(24+1)(28+1)…(21024+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(21024+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(21024+1)=(22-1)(22+1)(24+1)(28+1)…(21024+1)=(24-1)(24+1)(28+1)…(21024+1)=…=(21024-1)(21024+1)=22048-1.

回答下列问题:

(1)请借鉴该同学的经验,计算:

(3+1)(32+1)(34+1)(38+1).

(2)借用上面的方法,再逆用平方差公式计算:

)(1-

)…(1-

).

培优训练(十)

临沂中考)下列计算正确的是()

(A)2a2+4a2=6a4(B)(a+1)2=a2+1(C)(a2)3=a5(D)x7÷

x5=x2

2.图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()

(A)(m+n)2-(m-n)2=4mn

(B)(m+n)2-(m2+n2)=2mn

(C)(m-n)2+2mn=m2+n2

(D)(m+n)(m-n)=m2-n2

3.若a,b是正数,a-b=1,ab=2,则a+b=()

(A)-3(B)3(C)±

3(D)9

河北中考)已知y=x-1,则(x-y)2+(y-x)+1的值为_____.

江西中考)已知(m-n)2=8,(m+n)2=2,则m2+n2=______.

6.(2014.六盘水中考)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!

“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1,2,1恰好对应图中第三行的数字;

再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=______.

7.(8分)利用完全平方公式计算:

(1)482.

(2)1032.

8.(8分)(2014·

丽水中考)已知A=2x+y,B=2x-y,计算A2-B2.

9.(10分)如图所示,有四个同样大小的直角三角形,两条直角边分别为a,b,斜边为c,拼成一个正方形,但中间却留有一个小正方形,你能利用它们之间的面积关系,得到关于a,b,c的等式吗?

培优训练(十一)

1.下列计算36a8b6÷

a2b÷

4a3b2的方法正确的是()

(A)(36÷

÷

4)a8-2-3b6-1-2(B)36a8b6÷

4a3b2)

(C)(36-

-4)a8-2-3b6-1-2(D)(36÷

4)a8-2-3b6-0-2

2.一颗人造地球卫星的速度为2.88×

107米/时,一架喷气式飞机的速度为1.8×

106米/时,则这颗人造地球卫星的速度是这架喷气式飞机的速度的()

(A)1600倍(B)160倍(C)16倍(D)1.6倍

3.已知a3b6÷

a2b2=3,则a2b8的值等于()

(A)6(B)9(C)12(D)81

4.计算a5b÷

a3=_____.

5.已知28a3bm÷

28anb2=b2,那么m=_____,n=_____.

6.若(2a)3·

(-b2)2÷

12a3b2·

M=-b8,则M=_____.

(1)(-3xy2)2·

2xy÷

3x2y5.

(2)(x-y)5÷

(y-x)3.

8.(8分)三峡一期工程结束后的当年发电量为5.5×

109度,某市有10万户居民,若平均每户用电2.75×

103千瓦时.那么三峡工程该年所发的电能供该市居民使用多少年?

9.(10分)观察下列单项式:

x,-2x2,4x3,-8x4,16x5,…

(1)计算一下这里任一个单项式与前面相连的单项式的商是多少?

据此规律写出第n个单项式.

(2)根据你发现的规律写出第10个单项式.

培优训练(十二)

1.对于任意正整数n,按照n→平方→+n→÷

n→-n→答案程序计算,应输出的答案是()

(A)n2-n+1(B)n2-n(C)3-n(D)1

2.计算[2(3x2)2-48x3+6x]÷

(-6x)等于()

(A)3x3-8x2(B)-3x3+8x2(C)-3x3+8x2-1(D)-3x3-8x2-1

3.下列计算正确的是()

(A)(9x4y3-12x3y4)÷

3x3y2=3xy-4xy2(B)(28a3-14a2+7a)÷

7a=4a2-2a+7a

(C)(-4a3+12a2b-7a3b2)÷

(-4a2)=a-3b+

ab2

(D)(25x2+15x2y-20x4)÷

(-5x2)=-5-3xy+4x2

4.填上适当的式子,使以下等式成立:

2xy2+x2y-xy=xy·

5.如果用“★”表示一种新的运算符号,而且规定有如下的运算法则:

m★n=m2n+n,则(2x★y)÷

y的运算结果是_____.

6.已知梯形的面积是3a3b4-ab2,上、下底的长度之和为2b2,那么梯形的高为_____.

(1)(64x5y6-48x4y4-8x2y2)÷

(-8x2y2).

(2)(0.25a2b-

a3b2-

a4b3)÷

(-0.5a2b).

8.(8分)先化简,再求值:

(a2b-2ab2-b3)÷

b-(a+b)(a-b),其中a=

,b=-1.

9.(10分)一堂习题课上,数学老师在黑板上出了这样一道题:

当a=2012,b=2时,求[3a2b(b-a)+a(3a2b-ab2)]÷

a2b的值.一会儿,雯雯说:

“老师,您给的‘a=2012’这个条件是多余的.”一旁的小明反驳道:

“题目中有两个字母,不给这个条件,肯定求不出结果!

”他们

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 财务管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1