950地理信息系统考试大纲Word文件下载.docx

上传人:b****7 文档编号:22508191 上传时间:2023-02-04 格式:DOCX 页数:26 大小:120.34KB
下载 相关 举报
950地理信息系统考试大纲Word文件下载.docx_第1页
第1页 / 共26页
950地理信息系统考试大纲Word文件下载.docx_第2页
第2页 / 共26页
950地理信息系统考试大纲Word文件下载.docx_第3页
第3页 / 共26页
950地理信息系统考试大纲Word文件下载.docx_第4页
第4页 / 共26页
950地理信息系统考试大纲Word文件下载.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

950地理信息系统考试大纲Word文件下载.docx

《950地理信息系统考试大纲Word文件下载.docx》由会员分享,可在线阅读,更多相关《950地理信息系统考试大纲Word文件下载.docx(26页珍藏版)》请在冰豆网上搜索。

950地理信息系统考试大纲Word文件下载.docx

4.比较熟悉层次数据库模型、网状数据库模型和关系数据库模型的特点;

深入掌握面向对象数据库系统的特性,基本掌握其实现方式。

(四)空间分析原理与方法

1.理解并掌握空间信息模型的基本概念。

2.理解空间叠置分析的概念,熟练掌握基于矢量数据和栅格数据的空间叠置分析与实现方法。

3.理解并掌握空间缓冲区分析的模型及缓冲区分析核心思路与实现方法;

熟悉空间统计理论及实现方法。

4.了解网络分析、空间自相关分析的内容与方法。

5.深入理解并掌握数字地面模型的概念及其生成方法。

6.了解典型叠加模型的分析过程与方法;

掌握空间数据的集合分析和查询方法。

(五)地理信息系统的应用模型

1.掌握地理信息系统模型的分类和简单地理信息系统模型的构建过程。

2.理解并掌握适宜性模型、发展预测模型、位址选择模型和地学模拟模型的基本思路和建模方法,并能灵活运用。

3.熟悉利用地理空间数据与地理模型进行简单地理问题的模拟、预测与综合分析。

(六)地理信息系统开发与应用

1.掌握地理信息系统设计流程;

了解地理信息系统软件平台开发的基本方式。

2.熟悉地理信息系统的主要应用与更新;

理解地理信息系统应用模式。

3.掌握网络地理信息系统(WebGIS)的概念与特点;

了解分布式地理信息系统概念。

4.熟练掌握组件式地理信息系统(ComGIS)的概念与特点。

5.理解地理信息系统标准化的含义及其主要内容。

(七)地理信息科学与数字地球

1.掌握地理信息科学的基本概念及其主要研究内容。

2.掌握数字地球的基本概念;

了解数字地球产生的背景及核心技术。

3.了解“3S”(全球定位系统、地理信息系统、遥感)技术的基本概念及其主要应用领域。

三、考核内容

第一章地理信息系统基础

第一节地理信息系统的基本概念

1.地理信息

定义:

地理信息是指与研究对象的空间地理分布有关的信息,它表示地理系统诸要素的数量、质量、分布特征,相互联系和变化规律的图、文、声、像等的总称。

特性:

地域性;

多维结构;

时序特征。

2.信息系统

为了有效对信息流进行控制、组织管理,实现双向传递,需要通过某种信息系统。

它能对数据和信息进行采集、存储、加工和再现,并能回答用户一系列问题的系统,具有采集、管理、分析和表达数据的能力。

由计算机硬件、软件、数据和用户四大要素组成。

3.地理信息系统

地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,对空间相关数据进行采集、管理、操作、分析、模拟和显示,并采用地理模型分析方法,适时提供多种空间和动态的地理信息,为地理研究和地理决策服务而建立起来的计算机技术系统。

4.地理信息系统特征

(1)具有采集、管理、分析和输出多种地理空间信息的能力;

(2)以地理研究和地理决策为目的,以地理模型方法为手段,具有空间分析、多要素综合分析和动态预测的能力;

并能产生高层次的地理信息;

(3)由计算机系统支持进行空间地理数据管理,并由计算机程序模拟常规的或专门的地理分析方法,作用于空间数据,产生有用信息,完成人类难以完成的任务。

第二节地理信息系统的组成

1.硬件系统

2.计算机软件系统

3.地理空间数据

4.系统管理人员

5.应用模型

第三节地理信息系统的功能

1.基本功能

基本功能包括:

数据采集与编辑;

数据存储与管理;

数据处理与变换;

空间分析和统计;

产品制作与演示;

二次开发和编程。

2.应用功能

应用功能包括:

资源管理;

区域规划;

国土监测;

辅助决策。

第四节地理信息系统的发展

1.与其他学科的关系

地理信息系统的发展,明显地体现出多学科交叉的特点,这些交叉的学科包括地理学、地图学、摄影测量学、遥感技术、数学和统计科学、计算机科学,以及一切与处理和分析空间数据有关的学科。

目前数据库技术(DBMS)、计算机辅助设计、计算机辅助制图(CAM)和计算机图形学(ComputerGraphics)软件包已被许多GIS研究者所采用,但这些系统不是为地理意义而设计的,无法取代GIS的作用。

GIS正是这些相关学科与地理学相结合的基础上发展起来的。

2.地理信息系统的发展阶段

地理信息系统的创立和发展是与地理空间信息的表示、处理、分析和应用手段的不断发展分不开的。

考察地理信息系统的发展,可分为60年代的起始发展阶段、70年代的巩固阶段和80年代的大发展阶段。

3.地理信息系统的发展趋势

目前地理信息系统的主要发展趋势集中在以下几个方面:

空间数据结构与数据管理;

数据自动输入技术;

GIS与遥感的进一步结合;

GIS的智能化;

具有统一标准的分布式系统;

宏观应用和微观应用进一步加强,并形成新的产业。

第二章空间数据基础

第一节地理空间及其表达

1.地理空间

一般指上至大气电离层,下至地壳与地幔交界的莫霍面之间的空间区域。

其间是自然地理过程和生命及人类活动最活跃的场所。

要在地理空间中准确测定位置,需要采用一种空间定位框架来实现,也就是大地测量控制系统,包括平面控制网和高程控制网。

2.空间实体表达

地理空间实体:

包括点、线、面、曲面、体等多种类型。

空间实体表达:

在计算机中,把现实世界中各种以图形形式表达的空间实体通过数字的形式记录和表现出来,以便更好地进行计算机存储和处理。

数据表达的关键:

当对空间实体进行数据表达时,关键是如何表达空间的一个点,因为点是构成地理空间实体的基本元素。

3.大地水准面

假设一个与静止的平均海水面重合并延伸到大陆内部的包围整个地球的封闭的重力位水准面。

4.地球椭球体

就是将大地体绕短轴飞速旋转所形成的一个表面光滑的,规则的地球形体。

是对地球形体的描述,是为了测量成果的计算和测图工作的需要而定义的。

第二节地理空间数据及其特征

1.地理空间数据分类(表1)

表1地理空间数据分类

按数据来源

按数据结构

按数据特征

按几何特征

按数据发布形式

地图数据

影像数据

文本数据

矢量数据

栅格数据

空间数据

非空间数据

线

面、曲面

数字线画图

数字栅格图

数字高程模型

数字正射影像图

2.地理空间数据基本特征

空间特征:

指地理现象和过程所在的位置、形状和大小等几何特征,以及与相邻地理现象和过程的空间关系,包括方位关系、拓扑关系、相邻关系、相似关系等;

属性特征:

指地理现象和过程所具有的专属性质,通常包括名称、数量、质量、性质等,称为属性数据;

时间特征:

指一定区域内的地理现象和过程随着时间的变化情况,称为时间数据。

3.地理空间数据拓扑关系

拓扑关系类型

拓扑邻接:

指存在于空间图形的相同类型元素之间的拓扑关系;

拓扑关联:

指存在于不同类型空间元素之间的拓扑关系;

拓扑包含:

指存在于空间图形的相同类型但不同等级的元素之间的拓扑关系。

第三节地理空间数据结构的类型

1.矢量数据结构

是利用欧几里得几何学中的点、线、面及其组合体来表示地理实体空间分布的一种数据组织方式。

包括的内容:

实体数据结构;

拓扑数据结构

2.栅格数据结构

指将空间分割成为有规则的网格,称为栅格单元,在各个栅格单元上给出相应的属性值来表示地理实体的一种数据组织形式.

主要存储类型:

栅格矩阵结构;

游程(行程)编码结构。

3.矢量数据与栅格数据结构的优缺点

矢量数据结构:

优点:

表示地理数据的精度较高;

严密的数据结构,数据量小;

用网络连接法能完整地描述拓扑关系;

图形输出精确美观;

图形数据和属性数据的恢复、更新、综合都能实现。

缺点:

数据结构复杂;

矢量多边形地图或多边形网很难用叠置方法与栅格图进行组合;

显示和绘图费用高,特别是高质量绘图、彩色绘图和晕线图等;

数学模拟比较困难;

技术复杂,多边形内的空间分析不容易实现。

栅格数据结构:

数据结构简单;

空间数据的叠置和组合十分容易方便;

各类空间分析都很易于进行;

数学模拟方便;

技术开发费用低。

图形数据量大;

用大像元减少数据量时,可识别的现象结构将损失大量信息;

地图输出不精美;

难以建立网络连接关系;

投影变换花的时间多。

4.游程编码、四叉树编码方式

游程编码:

游程编码是按行的顺序存储多边形内的各个像元的列号,即在某行上从左至右存储属该多边形的始末像元的列号。

游程长度编码栅格加密时,数据量没有明显增加,压缩效率较高,且易于检索、叠加、合并等操作。

这种编码方法最适合于小型计算机,同时也减少了栅格数据库的数据输入量,但计算期间的处理和制图输出处理工作量都有所增加。

四叉树编码:

四叉树编码又称为四分树、四元树编码。

它是一种更有效地压编数据的方法。

它将2n×

2n像元阵列的区域,逐步分解为包含单一类型的方形区域,最小的方形区域为一个栅格像元。

图像区域划分的原则是将区域分为大小相同的象限,而每一个象限又可根据一定规则判断是否继续等分为次一层的四个象限。

其终止判据是,不管是哪一层上的象限,只要划分到仅代表一种地物或符合既定要求的几种地物时,则不再继续划分否则一直分到单个栅格像元为止。

5.多边形和结点的拓扑编辑

例如,设需要对多边形P1进行编辑,其算法过程为:

从下表所示的弧段文件中,检出与当前编辑的多边形P1相关的所有记录(表2):

表2对多边形P1进行编辑的过程

(1)

弧段号

起结点

终结点

左多边形

右多边形

C1

C2

C3

N1

N3

N2

P2

P1

P4

Ф

检出的记录中,计算机检查当前编辑的多边形P1所处的位置:

如果P1位在左多边形位置,将之与位于右多边形位置的多边形号相交换,同时也将该的结点号位置作相应的交换;

反之,如果当前编辑的多边形P1位于右多边形位置,则该记录的所有数据项顺序不作改变。

按照上述规则,检出的记录变为以下形式(表3):

表3对多边形P1进行编辑的过程

(2)

从经过代码位置转换的记录中,任取一个起结点作为起点,顺序连接各个结点,必要时可对记录的前后顺序作调整,使得连接的结点能自行封闭,如表4所示。

表4对多边形P1进行编辑的过程(3)

起结点终结点

N1N2

N2N3

N3N1

如果依照上述顺序的结点不能自行闭合,或者出现记录缺损或记录多余等情况,则表示弧段文件有错,必须改正出错的记录。

直到所有多边形都经过编辑的改正,再转入结点连接编辑。

第四节地理空间数据结构的建立

1.元数据

元数据是关于数据的描述性数据信息,它应尽可能多地反映数据集自身的特征规律,以便于用户对数据集的准确、高效与充分的开发与利用,不同领域的数据库,其元数据的内容会有很大差异。

作用:

帮助数据生产单位有效地管理和维护空间数据、建立数据文档,并保证即使其主要工作人员离退时,也不会失去对数据情况的了解;

提供有关数据生产单位数据存储、数据分类、数据内容、数据质量、数据交换网络及数据销售等方面的信息,便于用户查询检索地理空间数据;

帮助用户了解数据,以便就数据是否能满足其需求做出正确的判断;

提供有关信息,以便用户处理和转换有用的数据。

2.元数据的内容

对数据集的描述;

对数据集中各数据项、数据来源、数据所有者及数据序代(数据生产历史)等的说明;

对数据质量的描述,如数据精度、数据的逻辑一致性、数据完整性、分辨率、元数据的比例尺等;

对数据处理信息的说明,如量纲的转换等;

对数据转换方法的描述;

对数据库的更新、集成等的说明。

第三章空间数据处理

第一节空间数据的变换

1.几何纠正

几何纠正是为了实现数字化数据的坐标系统转换和图纸变形误差的纠正。

2.地图投影

地图投影是利用一定的数学方法则把地球表面的经、纬线转换到平面上的理论和方法。

目的:

研究解决曲面如何转化到平面,进一步分析如何解决地图投影中始终存在的变形问题。

常用地图投影:

高斯-克吕格投影,墨卡托投影,UTM投影,兰勃特投影。

3.地图投影转换

研究从一种地图投影变为另一种地图投影的理论和方法。

第二节空间数据结构的转换

通过记录坐标的方式,尽可能地将点、线、面地理实体表现得精确无误。

特点:

矢量数据能更精确地定义位置、长度和大小。

栅格数据结构实际就是像元阵列,每个像元由行列确定它的位置。

适合计算机处理。

3.由矢量向栅格转换

矢量格式向栅格格式转换又称为多边形填充,就是在矢量表示的多边形边界内部的所有栅格上赋予相应的多边形编号,从而形成栅格数据阵列。

技术方法:

点的栅格化;

线的栅格化;

面的栅格化。

4.由栅格向矢量转换

是为了将栅格数据分析的结果,通过矢量绘图装置输出,或者为了数据压缩的需要,将大量的面状栅格数据转换为由少量数据表示的多边形的边界。

更重要的是为了将自动扫描仪获取的栅格数据加入矢量形式的数据库。

方法:

基于图像数据的矢量化方法,栅格数据的矢量化方法。

第三节多元空间数据的融合

1.不同遥感平台和传感器数据之间的融合

Landsat与SPOT数据的融合;

SPOT与QuickBird的融合等。

2.遥感数据与GIS数据的融合

遥感影像与数字线画图(DLG)的融合:

经过正射纠正后的遥感影像,与数字线画图信息融合,可产生影像地图。

遥感影像与数字地形模型(DEM)的融合:

数字地形模型与遥感数据的融合有助于实现遥感影像的几何校正与配准,消除遥感影像中因地形起伏所造成的像元位移,提高遥感影像的定位精度,同时数字地形可参与遥感影像的分类,改善分类精度。

遥感影像与数字栅格图(DRG)的融合:

将数字栅格地图与遥感图像配准叠合,可以从遥感图像中快速发现以变化的区域,进而实现空间数据库的自动/半自动更新。

第四节空间数据的压缩与重分类

1.空间数据压缩的目的与意义

空间数据往往具有巨大的数据量,不采用数据压缩技术整个系统在存储空间和处理时间上都将承受巨大的压力。

意义:

即从空间坐标数据集合中抽取一个子集,使这个子集在规定的精度范围内最好的逼近原集合,而又取得尽可能大的压缩比。

2.空间数据编码

矢量编码方法:

x,y坐标方法;

树状索引编码法;

拓扑结构编码方法

栅格编码方法:

链式编码;

游程长度编码;

块式编码;

四叉树编码

第五节空间数据的内插方法

1.点的内插

用来建立具有连续变化特征现象的数值方法。

分块内插发:

线性内插法,双线性多项式内插发,二元样条函数内插发

逐点内插发:

移动拟合法,加权平均法,克里金法

整体内插发:

N次多项式拟合法

2.区域的内插

根据一组多边形分区的已知数据来推求同一地区另一组多边形分区未知数据的内插方法。

叠置法;

比重法

第六节空间数据库

1.层次数据库模型

层次数据模型表现为倒立的树,用户把层次数据库理解为段的层次。

一个段等价于一个文件系统的记录型。

在层次数据模型中,文件或记录之间的联系形成层次。

换句话说,层次数据库把记录集合表示成倒立的树结构。

有且只有一个节点没有双亲节点,除根节点外的其他节点有且只有一个双亲节点。

2.网状数据库模型

网状数据模型与层次模型类似,只是一个记录可以有多个双亲。

网状数据模型有三个基本概念,即记录型、数据项(或字段)以及链接。

此外,在网状模型术语里,联系被称为系,一个系至少由两个记录型组成。

第一个记录型称为主记录,相当于层次模型的双亲。

第二个记录型称为成员记录,相当于层次模型的子女。

主记录和它的成员记录之间的联系用链接来标识,数据库设计者给这个链接赋予系名。

这个系名用来检索和操纵数据。

能够更为直接地描述现实世界,如一个结点可以有多个双亲。

具有良好的性能,存取效率较高。

3.关系数据库模型

关系数据模型用简单的表代替复杂的树和网状结构来简化数据库的用户视图。

简单,结构独立性,易于设计、实现、维护和使用,灵活和强大的查询能力。

4.面向对象数据库系统

由数据和对数据的操作组成。

类是对多个对象共同特性的抽象概括。

消息是对象之间通信的唯一方式,用来指示接受消息的对象执行它的操作。

方法是对象收到消息后应采取的动作系列的描述。

对象具有的特性:

封装性;

继承性;

多态性等。

第四章空间分析原理与方法

第一节空间信息模型的基本概念

1.空间数据库

空间数据库主要是为GIS提供空间数据的存储和管理方法。

其主要有两种方式:

空间数据文件存储管理和空间数据库存储和管理。

2.模型

就是将系统的各个要素,通过适当的筛选,用一定的表现规则描写出来的简明的映象。

模型通常表达了某个系统的发展过程或发展结果。

第二节空间叠置分析

1.空间叠置分析的概念

空间叠置分析是指在相同的空间坐标系统调价下,将同一地区两个不同地理特征的空间和属性数据重叠相加,以产生空间区域的多重属性特征,或建立地理对象之间的空间对应关系。

2.基于矢量数据的叠置分析

点与多边形的叠合:

点与多边形的叠合是通过确定一个点状空间特征中的点落在另一个多边形空间特征中的哪一个多边形内,以便以每个点赋予新的多边形属性。

线与多边形的叠合:

现与多边形的叠合是通过确定一个线状空间特征中的线经过另一个多边形空间特征中的哪个多边形,以便为线赋予新的多边形属性。

多边形与多边形的叠合:

多边形与多边形的叠合是指将两个不同的多边形空间特征属性相重叠,产生新的多边形特征属性,以解决地理变量的多准则分析、区域多重属性的分析、地理特征的动态变化分析,以及图符要素跟新、区域信息提取等。

3.栅格数据的叠合分析

参与叠合分析的空间数据为栅格数据结构。

栅格数据的叠合算法可以有多个空间特征数据参与分析,而不像矢量叠合分析只能在空间特征数据之间进行。

栅格叠合分析虽然占用存储量比较大,但是运算过程比较简单。

条件:

具备两个或多个相同地区的相同行列数的栅格数据,栅格单元的大小也相同。

第三节空间缓冲区分析

1.空间缓冲区的类型

基于点特征的缓冲区是在点特征的周围以点为圆心、按照设定的距离为半径做的圆,相互靠近的圆可以相互重叠,以此表示点特征的影响范围或服务区域。

基于线特征的缓冲区是按缓冲距离在线的两侧做平行线,在线的端点出做半圆与平行线连接成封闭的区域。

相互靠近的缓冲区可以相互重叠。

基于面特征的缓冲区与线的缓冲区相似,可以在面的外部做缓冲区,也可以在面的内部做缓冲区,同样可以在内外都生成缓冲区。

2.矢量缓冲区的建立

建立点状实体的矢量缓冲区只需要以点状实体为圆心,以缓冲区距离为半径绘圆即可。

线状实体和面状实体缓冲区的建立也是以现状实体或面状实体的边线为参考线,做参考线的平行线,再考虑端点圆弧,即可建立缓冲区。

3.栅格缓冲区的建立

栅格缓冲区的生成可以通过两个步骤来实现。

首先是对需要做缓冲区的栅格单元做距离扩散,及技术员其他栅格到需要做缓冲区的栅格的距离。

然后按照设定的缓冲区距离提取符合要求的栅格单元。

第四节网络分析

1.空间网络分析

网路分析是通过模拟、分析网络的状态以及资源在网络上的流动和分配等,研究网络结构、流动效率及网络资源等的优化问题的一种方法。

2.网络组成和属性

组成:

站点;

节点;

拐角点;

中心;

链;

障碍。

属性

(1)阻强:

指资源在网络流动中的而阻力大小。

(2)资源容量:

指网络中心为了满足各链的需求,能够容纳或提供的资源总数量,也值从其他中心流向该中心流向其他中心的资源总量。

(3)资源需求量:

指网络系统中需提的线路、链、节点所能收集的或可以提供给某一中心的资源量。

第五节数字地面模型

1.数字地面模型

数字地面模型就是用数字化的形式表达的地形信息。

2.DEM的表示方法

(1)数学分块法

数学方法拟合表面时需依靠连续的三维函数,连续的三维函数能以高平滑度表示复杂表面。

局部拟合法是将复杂表面分成正方形像元,或面积大致相同的不规则形状小块,根据有限个离散点的高程,可得到拟合的DEM。

尽管在小块的边缘,坡度不一定都是连续变化的,还是应使用加权函数来保证小块连接处的匹配,最近分段模拟已用于地下水、土壤特征或其它环境数据的表面内插。

(2)图形法

线模式:

表示地形的最普通线模式是一系列描述高程曲线的等高线。

点模式:

人工网络法;

立体像对分析;

不规则三角网方法。

第五章地理信息系统的应用模型

第一节GIS应用模型的概述

1.GIS应用模型的分类

根据表达控件对象的不同可分为三类:

一类是基于理化原理的理论模型,又称为数学模型;

一类是基于变量之间的统计关系或启发式关系的模型,这类模型统称为经验模型,是通过理化统计方法和大量观测试验建立的模型;

另外一类是基于原理和经验的混合模型,这类模型基于理论原理的确定性变量,也有应用经验加以确定的不确定性变量。

按照研究对象的瞬时状态和发展过程,可将模型分为静态、半静态和动态三类。

2.GIS应用模型的构建

应用模型建模的步骤;

应用模型建模的途径;

应用模型建模的方法——制图建模。

第二节适宜性分析模型

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 文学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1