信号与系统实验报告 实验3周期信号的频谱分析Word格式.docx

上传人:b****7 文档编号:22407029 上传时间:2023-02-03 格式:DOCX 页数:12 大小:135.83KB
下载 相关 举报
信号与系统实验报告 实验3周期信号的频谱分析Word格式.docx_第1页
第1页 / 共12页
信号与系统实验报告 实验3周期信号的频谱分析Word格式.docx_第2页
第2页 / 共12页
信号与系统实验报告 实验3周期信号的频谱分析Word格式.docx_第3页
第3页 / 共12页
信号与系统实验报告 实验3周期信号的频谱分析Word格式.docx_第4页
第4页 / 共12页
信号与系统实验报告 实验3周期信号的频谱分析Word格式.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

信号与系统实验报告 实验3周期信号的频谱分析Word格式.docx

《信号与系统实验报告 实验3周期信号的频谱分析Word格式.docx》由会员分享,可在线阅读,更多相关《信号与系统实验报告 实验3周期信号的频谱分析Word格式.docx(12页珍藏版)》请在冰豆网上搜索。

信号与系统实验报告 实验3周期信号的频谱分析Word格式.docx

dt=0.00001;

%Specifythestepoftimevariable

t=-2:

dt:

4;

%Specifytheintervaloftime

w0=0.5*pi;

x1=cos(w0.*t);

x2=cos(3*w0.*t);

x3=cos(5*w0.*t);

N=input('

TypeinthenumberoftheharmoniccomponentsN='

);

x=0;

forq=1:

N;

x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q;

end

subplot(221)

plot(t,x1)%Plotx1

axis([-24-22]);

gridon,

title('

signalcos(w0.*t)'

subplot(222)

plot(t,x2)%Plotx2

axis([-24-22]);

gridon,

signalcos(3*w0.*t))'

subplot(223)

plot(t,x3)%Plotx3

axis([-24-22])

signalcos(5*w0.*t))'

subplot(224)

plot(t,x)%Plotxt

signalxt'

(2)给程序3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。

程序如下:

%Program3_1clear,closeall

T=2;

2;

x1=ut(t)-ut(t-1-dt);

x=0;

form=-1:

1

x=x+ut(t-m*T)-ut(t-1-m*T-dt);

w0=2*pi/T;

N=10;

L=2*N+1;

fork=-N:

N;

ak(N+1+k)=(1/T)*x1*exp(-j*k*w0*t'

)*dt;

phi=angle(ak);

subplot(211)'

k=-10:

10;

stem(k,abs(ak),'

k'

axis([-10,10,0,0.6]);

gridon;

fudupu'

subplot(212);

10

stem(k,angle(ak),'

axis([-10,10,-2,2]);

titie('

xiangweipu'

xlabel('

Frequencyindexx'

(3)反复执行程序Program3_2,每次执行该程序时,输入不同的N值,并观察所合成的周期方波信号。

通过观察,你了解的吉伯斯现象的特点是:

clear,closeall

t=-2:

x1=ut(t)-ut(t-1-dt);

x=0;

form=-1:

N=input('

TypeinthenumberoftheharmoniccomponentsN=:

'

L=2*N+1;

1:

ak(N+1+k)=(1/T)*x1*exp(-j*k*w0*t'

y=0;

forq=1:

L;

y=y+ak(q)*exp(j*(-(L-1)/2+q-1)*2*pi*t/T);

end;

subplot(221),

plot(t,x),

title('

Theoriginalsignalx(t)'

),

axis([-2,2,-0.2,1.2]),

subplot(223),

plot(t,y),

Thesynthesissignaly(t)'

axis([-2,2,-0.2,1.2]),

xlabel('

Timet'

k=-N:

stem(k,abs(ak),'

k.'

Theamplitude|ak|ofx(t)'

axis([-N,N,-0.1,0.6])

stem(k,phi,'

r.'

Thephasephi(k)ofx(t)'

axis([-N,N,-2,2]),

Indexk'

N=1

N=3

通过观察我们了解到:

如果一个周期信号在一个周期有内断点存在,那么,引入的误差将除了产生纹波之外,还将在断点处产生幅度大约为9%的过冲(Overshot),这种现象被称为吉伯斯现象(Gibbs 

phenomenon)。

即信号在不连续点附近存在一个幅度大约为9%的过冲,且所选谐波次数越多,过冲点越向不连续点靠近。

(4)计算如图的傅里叶级数的系数

clc,clear,close 

all 

T=2;

dt=0.00001;

t=-3:

3;

x=(t+1).*(u(t+1)-u(t))-(t-1).*(u(t)-u(t-1));

x1=0;

for 

m=-2:

x1=x1+(t+1-m*T).*(u(t+1-m*T)-u(t-m*T))-(t-1-m*T).*(u(t-m*T)-u(t-1-m*T));

end 

w0=2*pi/T;

N=10;

L=2*N+1;

ak(N+1+k)=(1/T)*x*exp(-j*k*w0*t'

phi=angle(ak);

plot(t,x1);

axis([-4 

1.2]);

grid 

on;

The 

signal 

x1(t)'

Time 

(sec)'

ylabel('

(5)仿照程序3_1,编写程序Q3_5,以计算x2(t) 

的傅里叶级数的系数(不绘图)。

clc,clear,closeall

x=ut(t+0.2)-ut(t-0.2-dt);

x2=0;

form=-1:

x2=x2+ut(t+0.2-m*T)-ut(t-0.2-m*T)-ut(t-0.2-m*t-dt);

L=2*N+1

fork=-N:

plot(t,x2);

axis([-2.52.501.2]);

gridon;

Thesignalx2(t)'

Timet(sec)'

signalx2(t)'

(6)仿照程序3_2,编写程序Q3_6,计算并绘制出原始信号x1(t) 

的波形图,用有限项级数合成的y1(t) 

的波形图,以及x1(t) 

的幅度频谱和相位频谱的谱线图。

程序如下:

x=(t+1).*(ut(t+1)-ut(t))-(t-1).*(ut(t)-ut(t-1));

form=-2:

2

x1=x1+(t+1-m*T).*(ut(t+1-m*T)-ut(t-m*T))-(t-1-m*T).*(ut(t-m*t)-ut(t-1-m*t));

fork=-N:

y=y+ak(q)*exp(j*(q-1-N)*w0*t);

plot(t,x)%plotx

axis([-33-0.21.2]);

plot(t,y)%Ploty

subplot(222);

Timei(sec)'

实验心得:

通过这次实验,了解了连续时间周期信号的傅里叶级数的物理意义,观察了截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因,了解掌握了各种典型的连续时间非周期信号的频谱特征。

从开始的不了解,到后来通过看书,上网查找资料做出这个实验,我学到了很多东西,虽然花费了不少时间,但是却获得了编程经验。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1