苏教版《二元一次方程》教学设计Word格式.docx
《苏教版《二元一次方程》教学设计Word格式.docx》由会员分享,可在线阅读,更多相关《苏教版《二元一次方程》教学设计Word格式.docx(6页珍藏版)》请在冰豆网上搜索。
这个问题能用一元一次方程解决吗?
你能列出方程吗?
设姚明投进了x个两分球,罚进了y个球,可列出方程______。
(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。
你知道他分别投进几个两分球、几个三分球吗?
设易建联投进了x个两分球,y个三分球,可列出方程______。
对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?
那这两个方程有什么相同点吗?
你能给它们命一个名称吗?
从而揭示课题。
(设计意图:
第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;
第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。
另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”、“乐学”。
)
(一)探索交流,汲取新知
1、概念思辩,归纳二元一次方程的特征
那到底什么叫二元一次方程?
(学生思考后回答)
翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?
(同学们思考后回答)
根据概念,你觉得二元一次方程应具备哪几个特征?
活动:
你自己构造一个二元一次方程。
快速判断:
下列式子中哪些是二元一次方程?
① x2+y=0
② y=2x+4
③ ④
⑥2x+1=2-x
⑤
⑦
这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。
在归纳二元一次方程特征的时候,引导学生理解“含有未知数的项的次数都是一次”实际上是说明方程的两边是整式。
在判断的过程中,②⑥⑦是在书本的基础上补充的,②是让学生先认识这种形式,后面出现用关于一个未知数的代数式表示另一个未知数实际上是方程变形;
⑥是方程两边都出现了x,强化概念里两个未知数是不一样的;
⑦是再次理解“项的次数”。
2、二元一次方程解的概念
前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?
通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?
师:
你是怎么考虑的?
(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)
利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。
(学生看书本上的记法)
使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:
使方程左右两边相等的一对未知数的取值。
引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。
3、二元一次方程解的不唯一性
对于2x+3y=16,你觉得这个方程还有其它的解吗?
你能试着写几个吗?
这些解你们是如何算出来的?
设计此环节,目的有三个:
首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;
其次是让学生体会到二元一次方程的解的不唯一性;
最后让学生感受如何得到一个正确的解:
只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。
4、如何去求二元一次方程的解
例已知方程3x+2y=10
(1)当x=2时,求所对应的y的值;
(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;
(3)用含x的代数式表示y;
(4)用含y的代数式表示x;
(5)当x=-2,0时,所对应的y的值是多少?
(6)写出方程3x+2y=10的三个解.
此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。
以此突破本节课的难点。
5、大显身手:
课内练习第2题
(二)梳理知识,课堂升华
本节课你有收获吗?
能和大家说说你的感想吗?
(三)作业布置
必做题:
书本作业题1、2、3、4
选做题:
书本作业题5、6
一、设计说明
本节授课内容属于概念课教学。
数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。
只有真正理解数学概念,才能理解数学。
二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。
在二元一次方程的解的教学过程中,采用的是让学生体会“一个解——不止一个解——无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。
在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“一般——特殊——一般——特殊”的教学流程,以期突破难点。
首先抛出问题“这几个解你是如何求的”,此时注意的聚焦点是二元一次方程;
其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;
然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;
最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。
另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。