电工技术基础与技能知识点汇总Word文档下载推荐.docx
《电工技术基础与技能知识点汇总Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《电工技术基础与技能知识点汇总Word文档下载推荐.docx(33页珍藏版)》请在冰豆网上搜索。
4R0
这时
称负载与电源匹配。
13、串联电路中电流处处相等;
电路总电压等于各部分电路两端的电压之和;
总电阻
等于各个电阻之和;
各电阻消耗的功率与它的阻值成正比。
14、改装电压表:
设电流表的满偏电流为
Ig,内阻为
Rg,要改装成量程为
U
的电压表,
求串入的
R
R=
I
g
-
g
Rg
15、并联电路中各支路两端的电压相等;
电路中总电流等于各支路的电流之和;
并联
电路总电阻的倒数等于各个电阻的倒数之和;
通过各个电阻的电流与它的阻值成反比;
各
个电阻消耗的功率与它的阻值成反比。
16、改装电流表:
17、万用表:
测量前观察表头指针是否处于零位;
选择合适的量程:
应使表头指针偏
倒满刻度三分之二左右;
无法估算测量值时可从最大量程当逐渐减少到合适量程;
测量过
程中不允许拨动转换开关选择量程;
测电阻时不可带电测量;
使用结束后,要置于最高交
流电压挡或off挡。
18、伏安法测电阻:
待测电阻值比电压表内阻小得多时用电流表外接法;
待测电阻阻
值比电流表内阻大得多时用电流表内接法。
19、惠斯通电桥测电阻:
Rx=
l2
l1
R
20、电位:
电路中任一点与零电位点之间的电压就是该点的电位。
电位的计算方法:
1.确定零电位点。
2.标出电路中的电流方向,确定电路中各元件两端电压的正、负极。
3.从待求点通过一定的路径绕到零电位点,则该点的电位等于此路径上全部电压降的代数
和。
如果在绕行过程中从元件的正极到负极,此电压便为正的,反之,从元件的负极到正
极,此电压则为负。
注意:
(1)电位与所选择的绕行路径无关。
(2)选取不同的零电位点,
各电位将发生变化,但电路中任意两点间的电压将保持不变。
21、复杂直流电路常用名词:
1.
支路:
电路中具有两个端钮且通过同一电流的无分支
电路。
2.
节点:
电路中三条或三条以上支路的联接点。
3.
回路:
电路中任一闭合的路径。
4.
网孔:
不含有分支的闭合回路。
22、基尔霍夫电流定律(KCL
节点电流定律)内容在任何时刻,电路中流入任一节点中
的电流之和,恒等于从该节点流出的电流之和,即在任何时刻,电路中任一节点上的各支
路电流代数和恒等于零。
23、基夫尔霍电压定律(KVL
回路电压定律):
在任何时刻,沿着电路中的任一回路绕
行方向,回路中各段电压的代数和恒等于零。
即对于电阻电路来说,任何时刻,在任一闭
合回路中,各段电阻上的电压降代数和等于各电源电动势的代数和。
24、支路电流法
以各支路电流为未知量,应用基尔霍夫定律列出节点电流方程和回路电压方程,解出
各支路电流,从而可确定各支路
(或各元件)的电压及功率,这种解决电路问题的方法叫做
支路电流法。
对于具有
b
条支路、n
个节点的电路,可列出
(n
1)个独立的电流方程和
b
1)个独立的电压方程。
【例
3-2】 如图
3-7
所示电路,已知
E1
=
42
V,E2
21
V,R1
12
Ω,R2
3
Ω,R3
6
Ω,试求:
各支路电流
I1、I2、I3
。
解:
该电路支路数
3、节点数
n
2,所以应列出
个节点电流方程和
2
个回路电
压方程,并按照
∑RI
∑E
列回路电压方程的方法:
(1)I1
I2
+
I3
(任一节点)
(2)R1I1
R2I2
E2 (网孔
1)
(3)R3I3
-R2I2
-E2 (网孔
2)
代入已知数据,解得:
I1
4
A,I2
5
A,I3
-1
A。
电流
与
均为正数,表明它们的实际方向与
图中所标定的参考方向相同,I3
为负数,表明它们
的实际方向与图中所标定的参考方向相反。
图
例题
3-2
25、叠加定理
一、叠加定理的内容
当线性电路中有几个电源共同作用时,各支路的电流(或电压)等于各个电源分别单独
作用时在该支路产生的电流(或电压)的代数和(叠加)。
在使用叠加定理分析计算电路应注意以下几点:
(1)
叠加定理只能用于计算线性电路(即电路中的元件均为线性元件)的支路电流或电压
(不能直接进行功率的叠加计算);
电压源不作用时应视为短路,电流源不作用时应视为开路;
(3)
叠加时要注意电流或电压的参考方向,正确选取各分量的正负号。
二、应用举例
【例
3-3】如图
3-8(a)所示电路,已知
17
Ω,R2
Ω,试应用叠加定理求各支路电流
当电源
单独作用时,将
E2
视为短路,设
R23
R2∥R3
0.83
Ω
I1'
=
E1
R1
R23
17
2.83
A
则
2'
I3'
R3
R2
R2
R13
=R1∥R3
1.43
'
E2
R13
2.43
7
R1
3-8
3-3
E1、E2
共同作用时(叠加),若各电流分量与原电路电流参考方向相同时,
在电流分量前面选取“+”号,反之,则选取“-”号:
I1′-
I1″
A,I2
I2′
I2″
A,I3
I3′
I3″
3
26、
戴维宁定理
一、二端网络的有关概念
1.二端网络:
具有两个引出端与外电路相联的网络。
又叫做一端口网络。
2.无源二端网络:
内部不含有电源的二端网络。
3.有源二端网络:
内部含有电源的二端网络。
二、戴维宁定理
3-9
二端网络
任何一个线性有源二端电阻网络,对外电路来说,总可以用一个电压源
E0
与一个电阻
r0
相串联的模型来替代。
电压源的电动势
等于该二端网络的开路电压,电阻
等于该二
端网络中所有电源不作用时(即令电压源短路、电流源开路)的等效电阻(叫做该二端网络的
等效内阻)。
该定理又叫做等效电压源定理。
3-4】如图
3-10
6.2
0.2
Ω,R
3.2
Ω,试应用戴维宁定理求电阻
中的电流
3-10 例题
3-4
3-11 求开路电压
Uab
将
所在支路开路去掉,如图
3-11
所示,求开路电压
Uab:
==
A
,Uab
R2I1
0.4
6.6
V
E0
R20.4
将电压源短路去掉,如图
3-12
所示,求等效电阻
Rab:
3-12 求等效电阻
Rab图
3-13 求电阻
I
Rab
R1∥R2
0.1
Ω
r0
(3)画出戴维宁等效电路,如图
3-13
所示,求电阻
:
6.6
3.3
3-5】如图
3-14
所示的电路,已知
8
V,R1=
R4
4
Ω,R5
0.125
R5
3-14 例题
3-5图
3-15 求开路电压
3-15
E
,
I3
R3
R4
Uab
-R4I4
3-16
3-16 求等效电阻
3-17 求电阻
(R1∥R2)
(R3∥R4)
1.875
3.875
根据戴维宁定理画出等效电路,如图
3-17
中的电流
I5
R5
1
0.25
27、两种电源模型的等效变换
一、电压源
通常所说的电压源一般是指理想电压源,其基本特性是其电动势
(或两端电压)保持固
定不变
或是一定的时间函数
e(t),但电压源输出的电流却与外电路有关。
实际电压源是含有一定内阻
的电压源。
3-18 电压源模型
二、电流源
通常所说的电流源一般是指理想电流源,其基本特性是所发出的电流固定不变(Is)或是
一定的时间函数
is(t),但电流源的两端电压却与外电路有关。
实际电流源是含有一定内阻
rS
的电流源。
3-19 电流源模型
三、两种实际电源模型之间的等效变换
实际电源可用一个理想电压源
和一个电阻
串联的电路模型表示,也可用一个理想
电流源
IS
并联的电路模型表示,对外电路来说,二者是相互等效的,等效变
换条件是
rS ,
rSIS或IS
E/r0
3-6】如图
3-18
所示的电路,已知电源电动势
V,内阻
0.2
Ω,当接上
5.8
负载时,分别用电压源模型和电流源模型计算负载消耗的功率和内阻消耗的功
率。
3-18 例题
3-6
用电压源模型计算:
1A
,负载消耗的功率
PL
I2R
W,内阻的功率
Pr
I2r0
用电流源模型计算:
电流源的电流
E/r0
30
A,内阻
负载中的电流
rS
,负载消耗的功率
PL=
W,
内阻中的电流
r
29
,内阻的功率
Ir2r0
168.2
两种计算方法对负载是等效的,对电源内部是不等效的。
3-7】如图
3-19
所示的电路,已知:
6
10
Ω,试应用电源等效变换法求电阻
中的电流。
3-19 例题
3-7图
3-20
的两个电压源等效成两个电流源
先将两个电压源等效变换成两个电流源,
如图
所示,两个电流源的电流分别为
IS1
E1/R1
A,IS2
E2/R2
将两个电流源合并为一个电流源,得到最简等效
电路,如图
3-21
所示。
等效电流源的电流
IS2
其等效内阻为
求出
中的电流为
的最简等效电路
0.5
四、特点
1.恒压源的特点:
(1)它的电压恒定不变。
(2)通过它的电流可以是任意的,且决
定于与它连接的外电路负载的大小。
2.恒流源的特点:
(1)它提供的电流恒定不变,不随外电路而改变。
(2)电源端电
压是任意的,且决定于外电路。
五、电源等效变换及化简注意点:
两个并联的电流源可以直接合并成一个电流源;
两
个串联的电压源可以直接合并成一个电压源;
与恒压源并联的电流源或电阻均可去除;
与
恒流源串联的电压源或电阻均可去除。
28、.电容器——
任何两个彼此绝缘而又互相靠近的导体都可以组成电容器。
电容器
所带电量与两极板间电压的比值为电容器的电容。
C=
U
,平行板电容器的电容与介电常
数成正比,与正对面积成正比,与极板的距离成反比。
.C=ε
d
29、串联电容器的总电容的倒数等于各电容器的电容倒数之和;
q1=q2=q3
=q,U=U1+U2+U3,串联的作用:
增大耐压,但电容减小。
并联电容器的总电容等于各
电容器的电容之和。
1)q=q1+q2+q3,2)U
U1
U2
U3,3)C=C1+C2+C3
30、电容器的质量判别
1.用
R⨯100
R⨯1k
挡。
2.将万用表分别与电容器两端接
触,指针发生偏转并回到接近起始的地方,说明电容器的质量很好。
3.若指针偏转后回不
到起始位置的地方,而停在标度盘的某处说明电容器的漏电很大,这时指针所指出的电阻
数值即表示该电容器的漏电阻值。
4.若指针偏转到零位置之后不再回去,则说明电容器内
部已经短路;
如果指针根本不偏转,则说明电容器内部可能断路,或电容量很小。
31、电容器中的电场能量
Wc=
qUC
CUC2
32、磁场性质:
磁场对处在它里面的磁极有磁场力的作用。
磁场的方向:
在磁场中任
一点,小磁针静止,N
极所指的方向为该点的磁场方向。
F
33、磁感应强度
B
是表示磁场强弱的物理量
B=
34、磁通
Φ=BS(条件:
①B⊥S;
②匀强磁场);
单位:
韦伯(Wb);
B=
Φ
;
B
可看作单位面积的磁通,叫磁通密度。
35、磁导率µ
表示媒介质导磁性能的物理量。
真空中磁导率:
µ
0=4π⨯10-7H/m。
<1 反磁性物质;
r>1 顺磁性物质;
r>
>
1 铁磁性物质。
前面两种为非铁磁
性物质µ
≈1,铁磁性物质µ
不是常数。
36、磁场强度
H
表示磁场的性质,与磁场内介质无关。
H=
μ
或B=µ
H=µ
0µ
rH
安/米
37、磁场对通电导线的作用力
F=BI
l
sin
θ,力的方向——用左手定则判定
38、剩磁:
当
H减至零时,B
值不等于零,而是保留一定的值,称为剩磁。
用
Br
39、磁滞现象:
的变化总是落后于
的变化。
40、磁滞损耗:
反复交变磁化过程中有能量损耗,称为磁滞损耗。
剩磁和矫顽力愈大
的铁磁性物质,磁滞损耗就愈大。
41、磁滞回线窄而陡是软磁性物质,磁滞损耗小,易磁化剩磁小,做电磁铁、电机变
压器铁心;
磁滞回线宽而平是硬磁性物质,磁滞损耗大,难磁化剩磁大,做永久磁铁;
矩
磁性物质做计算机存储元件。
42、磁路:
磁通经过的闭合路径。
43、磁动势:
通电线圈产生磁场,磁通随线圈匝数和所通过的电流的增大而增加。
把
通过线圈的电流和线圈匝数的乘积称为磁动势。
Em=IN
安培(A)
44、磁阻:
磁通通过磁路时所受到的阻碍作用。
Rm=
μ
式中:
l-磁路长度(m);
S-磁路横截面积(m2);
μ-磁导率(H/m);
Rm-磁阻(1/H)。
45、磁路的欧姆定律:
通过磁路的磁通与磁动势成正比,与磁阻成反比。
Φ=
Em
Rm
46、电磁感应现象:
利用磁场产生电流的现象叫电磁感应现象。
产生的电流叫感应电
流。
产生感应电流的条件:
只要穿过闭合电路的磁通发生变化,闭合电路中就有电流产生。
47、右手定则内容:
伸开右手,使大拇指与其余四指垂直,并且都与手掌在一个平面
内,让磁感线垂直进入手心,大拇指指向导体运动方向,这时四指所指的方向为感应电流
的方向。
48、楞次定律:
感应电流的方向,总是要使感应电流的磁场阻碍引起感应电
流的磁通的变化。
49、感应电动势:
在电磁感应现象中产生的电动势叫感应电动势。
E=BLvsinθ
50、法拉第电磁感应定律:
线圈中感应电动势的大小与穿过线圈的磁通变化率成正比。
E=
ΔΦ
Δ
若线圈有
N
匝,则
E=N
Δψ
,(N
∆Φ=NΦ2
-NΦ1=ψ2
-ψ1=
∆ψ
)(ψ
称为磁链)
51、自感现象:
由于线圈本身的电流发生而产生的电磁感应现象叫自感现象。
简称自
感。
52、线圈的自感磁链与电流的比值为线圈的自感系数,L
由线圈本身的特性决定,
与线圈的尺寸、匝数和媒质的磁导率有关,而与线圈中的电流无关。
53、自感电动势大小与线圈中电流的变化率成正比
EL=
ψl1
-ψl2
LI
LI1
=L
ΔI
54、镇流器的作用:
荧光灯开始点燃时产生瞬时高压。
荧光灯正常发光时,与灯管串
联起降压限流的作用。
55、磁场能量
WL=
L
I2L
反映储存磁场能量的能力。
56、互感现象:
当一个线圈中电流发生变化时,在另一个线圈中将要产生感生电动势,
这种现象叫互感现象。
产生的感应电动势叫互感电动势。
57、互感系数
M
只与两个回路的结构、相互位置及媒质磁导率有关,与回路中的电流
无关。
只有当媒介质为铁磁性材料时,M
才与电流有关。
58、互感电动势:
i1
变化产生
EM2=
Δψ21
=M
i1
同理
i2
EM1
=M
i2
,其大小等于互感系数和另一线圈中电流变化率的乘积。
59、同名端:
把在同一变化磁通作用下,感应电动势极性相同的端点叫同名端。
感应
电动势极性相反的端点叫异名端。
用符号“∙”表示同名端。
60、互感线圈的串联
1.顺串是异名端相接
顺
L1+L2+2M
2.反串是异名端相接
反=
L1+L2-2M
其中互感系数:
M=
L顺
L反
61、涡流:
铁心中由于电磁感应原理产生的涡电流称为涡流。
涡流的害处:
因整块金
属电阻很小,所以涡流很大,使铁心发热,温度升高,使材料绝缘性能下降,甚至破坏绝
缘造成事故。
涡流损失:
铁心发热,使一部分电能转换成热能浪费,这种电能损失叫涡流
损失。
减小涡流的措施:
铁心用涂有绝缘漆的薄硅钢片叠压制成。
涡流的利用:
用于有色
金属、特种合金的冶炼。
62、磁屏蔽:
为了避免互感现象,防止出现干扰和自激,须将有些仪器屏蔽起来,使
其免受外界磁场的影响,这种措施叫磁屏蔽。
屏蔽措施:
(1)用软磁材料做成屏蔽罩。
(2)对高频变化的磁场,用铜或铝等导电性能良好的金属制成屏蔽罩。
(3)装配器件时,
相邻线圈互相垂直放置。
63、变压器工作原理:
电磁感应原理。
构造:
铁心和绕组。
变压器作用:
改变交流电
压
N1
改变交流电流
I1
≈
K
Z2
=K2
Z2
使负载阻抗与信号源内阻抗匹配,从而使负载获得最大的输出功率;
改变相位。
64、交流电:
强度和方向都随时间作周期性变化的电流叫交流电。
e=2
v
sinωt
65、中性面:
跟磁力线垂直的平面叫中性面。
66、正弦交流电:
按正弦规律变化的交流电。
线圈平面跟中性面有一夹角ϕ时开始计
时
e=Em
(ωt+
ϕ
);
i=Im
(ωt+
u=Umsin
)。
67、表征交流电变化快慢的物理量——1.周期:
交流电完成一次周期性变化所需的时
间。
T
表示,单位:
s。
2.频率:
交流电在
1s
内完成周期性变化的次数。
f
表示,单
位:
Hz。
3、角频率:
交流电每秒钟所变化的角度:
ω=
2π
T
=2
π
f
68、有效值:
让交流电和直流电通过同样阻值的电阻,若它们在同一时间内产生的热
量相等,就把这一直流电的数值叫这一交流电的有效值。
69、相位:
ωt+ϕ
叫交流电的相位。
2.初相位
t=0
时的相位,叫初相位。
相位可用
来比较交流电的变化步调。
3.相位差:
两个交流电的相位差。
用ϕ
表示。
70、正弦交流电三要素:
有效值(或最大值)、频率(或周期或角频率)、初相。
71、RLC
串联电路应把握的基本原则:
1、串联电路中电流处处相等,选择正弦电流
为参考正弦量。
2、电容元件两端电压
UC
相位滞后其电流
iC
相位
π/2。
3、电感元件两端
电压
UL
相位超前其电流
iL
72、RLC
串联电路的阻抗
Z
(
X
C
)2
73、RLC
串联电路的功率
RLC
串联电路中,存在着有功功率
P、无功功率
QC
和
QL,视在功率
S
它们分别为
1:
在电阻、电感和电容串联电路中,电流大小为
6A,UR=80V,UL=240V,UC=