中考数学圆心角弧弦的关系试题汇编Word文档格式.docx

上传人:b****7 文档编号:22172556 上传时间:2023-02-02 格式:DOCX 页数:7 大小:17.75KB
下载 相关 举报
中考数学圆心角弧弦的关系试题汇编Word文档格式.docx_第1页
第1页 / 共7页
中考数学圆心角弧弦的关系试题汇编Word文档格式.docx_第2页
第2页 / 共7页
中考数学圆心角弧弦的关系试题汇编Word文档格式.docx_第3页
第3页 / 共7页
中考数学圆心角弧弦的关系试题汇编Word文档格式.docx_第4页
第4页 / 共7页
中考数学圆心角弧弦的关系试题汇编Word文档格式.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

中考数学圆心角弧弦的关系试题汇编Word文档格式.docx

《中考数学圆心角弧弦的关系试题汇编Word文档格式.docx》由会员分享,可在线阅读,更多相关《中考数学圆心角弧弦的关系试题汇编Word文档格式.docx(7页珍藏版)》请在冰豆网上搜索。

中考数学圆心角弧弦的关系试题汇编Word文档格式.docx

分析:

连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.

解答:

解:

连接OD,OC,作DE⊥AB于E,OF⊥AC于F,

∵∠CAD=∠BAD(角平分线的性质),

∴=,

∴∠DOB=∠OAC=2∠BAD,

∴△AOF≌△OED,

∴OE=AF=AC=3cm,

在Rt△DOE中,DE==4cm,

在Rt△ADE中,AD==4cm.

故选A.

点评:

本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.

3、(2013泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()

A.OC∥AEB.EC=BCC.∠DAE=∠ABED.AC⊥OE

切线的性质;

圆周角定理.

专题:

计算题.

由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A正确;

由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;

由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;

AC不一定垂直于OE,选项D错误.

A.∵点C是的中点,

∴OC⊥BE,

∵AB为圆O的直径,

∴AE⊥BE,

∴OC∥AE,本选项正确;

B.∵=,

∴BC=CE,本选项正确;

C.∵AD为圆O的切线,

∴AD⊥OA,

∴∠DAE+∠EAB=90°

∵∠EBA+∠EAB=90°

∴∠DAE=∠EBA,本选项正确;

D.AC不一定垂直于OE,本选项错误,

故选D

此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键.

4、(2013•苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°

,则∠DAB等于()

A.55°

B.60°

C.65°

D.70°

圆周角定理;

圆心角、弧、弦的关系.

连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°

,再根据直径所对的圆周角为直角得到∠ADB=90°

,然后利用三角形内角和定理可计算出∠DAB的度数.

连结BD,如图,

∵点D是AC弧的中点,即弧CD=弧AD,

∴∠ABD=∠CBD,

而∠ABC=50°

∴∠ABD=×

50°

=25°

∵AB是半圆的直径,

∴∠ADB=90°

∴∠DAB=90°

﹣25°

=65°

故选C.

本题考查了圆周角定理及其推论:

在同圆或等圆中,同弧或等弧所对的圆周角相等;

直径所对的圆周角为直角.

5、(2013•宜昌)如图,DC是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()

A.B.AF=BFC.OF=CFD.∠DBC=90°

垂径定理;

根据垂径定理可判断A、B,根据圆周角定理可判断D,继而可得出答案.

∵DC是⊙O直径,弦AB⊥CD于F,

∴点D是优弧AB的中点,点C是劣弧AB的中点,

A、=,正确,故本选项错误;

B、AF=BF,正确,故本选项错误;

C、OF=CF,不能得出,错误,故本选项错误;

D、∠DBC=90°

,正确,故本选项错误;

本题考查了垂径定理及圆周角定理,解答本题的关键是熟练掌握垂径定理、圆周角定理的内容,难度一般.

6、(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()

A.4B.5C.6D.7

相似三角形的判定与性质.

根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.

设AE=x,则AC=x+4,

∵AC平分∠BAD,

∴∠BAC=∠CAD,

∵∠CDB=∠BAC(圆周角定理),

∴∠CAD=∠CDB,

∴△ACD∽△DCE,

∴=,即=,

解得:

x=5.

故选B.

本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.

7、(2013台湾、34)如图,是半圆,O为AB中点,C、D两点在上,且AD∥OC,连接BC、BD.若=62°

,则的度数为何?

()

A.56B.58C.60D.62

平行线的性质.

以AB为直径作圆,如图,作直径CM,连接AC,根据平行线求出∠1=∠2,推出弧DC=弧AM=62°

,即可求出答案.

以AB为直径作圆,如图,作直径CM,连接AC,

∵AD∥OC,

∴∠1=∠2,

∴弧AM=弧DC=62°

∴弧AD的度数是180°

﹣62°

=56°

本题考查了平行线性质,圆周角定理的应用,关键是求出弧AM的度数.

8、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.

扇形面积的计算;

勾股定理;

综合题.

根据弦AB=BC,弦CD=DE,可得∠BOD=90°

,∠BOD=90°

,过点O作OF⊥BC于点F,OG⊥CD于点G,在四边形OFCG中可得∠FCD=135°

,过点C作CN∥OF,交OG于点N,判断△CNG、△OMN为等腰直角三角形,分别求出NG、ON,继而得出OG,在Rt△OGD中求出OD,即得圆O的半径,代入扇形面积公式求解即可.

∵弦AB=BC,弦CD=DE,

∴点B是弧AC的中点,点D是弧CE的中点,

∴∠BOD=90°

过点O作OF⊥BC于点F,OG⊥CD于点G,

则BF=FG=2,CG=GD=2,∠FOG=45°

在四边形OFCG中,∠FCD=135°

过点C作CN∥OF,交OG于点N,

则∠FCN=90°

,∠NCG=135°

﹣90°

=45°

∴△CNG为等腰三角形,

∴CG=NG=2,

过点N作NM⊥OF于点M,则MN=FC=2,

在等腰三角形MNO中,NO=MN=4,

∴OG=ON+NG=6,

在Rt△OGD中,OD===2,

即圆O的半径为2,

故S阴影=S扇形OBD==10π.

故答案为:

10π.

本题考查了扇形的面积计算、勾股定理、垂径定理及圆心角、弧之间的关系,综合考察的知识点较多,解答本题的关键是求出圆0的半径,此题难度较大.

9、(2013•常州)如图,△ABC内接于⊙O,∠BAC=120°

,AB=AC,BD为⊙O的直径,AD=6,则DC=2.

含30度角的直角三角形;

根据直径所对的圆周角是直角可得∠BAD=∠BCD=90°

,然后求出∠CAD=30°

,利用同弧所对的圆周角相等求出∠CBD=∠CAD=30°

,根据圆内接四边形对角互补求出∠BDC=60°

再根据等弦所对的圆周角相等求出∠ADB=∠ADC,从而求出∠ADB=30°

,解直角三角形求出BD,再根据直角三角形30°

角所对的直角边等于斜边的一半解答即可.

∵BD为⊙O的直径,

∴∠BAD=∠BCD=90°

∵∠BAC=120°

∴∠CAD=120°

=30°

∴∠CBD=∠CAD=30°

又∵∠BAC=120°

∴∠BDC=180°

﹣∠BAC=180°

﹣120°

=60°

∵AB=AC,

∴∠ADB=∠ADC,

∴∠ADB=∠BDC=×

60°

∵AD=6,

∴在Rt△ABD中,BD=AD÷

cos60°

=6÷

=4,

在Rt△BCD中,DC=BD=×

4=2.

2.

本题考查了圆周角定理,直角三角形30°

角所对的直角边等于斜边的一半,以及圆的相关性质,熟记各性质是解题的关键.

10、(2013•黔西南州)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,

(1)求证:

CB∥PD;

(2)若BC=3,sin∠P=,求⊙O的直径.

锐角三角函数的定义.

几何综合题.

(1)要证明CB∥PD,可以求得∠1=∠P,根据=可以确定∠C=∠P,又知∠1=∠C,即可得∠1=∠P;

(2)根据题意可知∠P=∠CAB,则sin∠CAB=,即=,所以可以求得圆的直径.

(1)证明:

∵∠C=∠P

又∵∠1=∠C

∴∠1=∠P

∴CB∥PD;

(2)解:

连接AC

∵AB为⊙O的直径,

∴∠ACB=90°

又∵CD⊥AB,

∴∠P=∠CAB,

∴sin∠CAB=,

即=,

又知,BC=3,

∴AB=5,

∴直径为5.

本题考查的是垂径定理和平行线、圆周角性质,解题时细心是解答好本题的关键.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 军事

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1