pH电位图原理在环境化学中应用的探讨01Word格式文档下载.docx

上传人:b****7 文档编号:22164894 上传时间:2023-02-02 格式:DOCX 页数:12 大小:169.72KB
下载 相关 举报
pH电位图原理在环境化学中应用的探讨01Word格式文档下载.docx_第1页
第1页 / 共12页
pH电位图原理在环境化学中应用的探讨01Word格式文档下载.docx_第2页
第2页 / 共12页
pH电位图原理在环境化学中应用的探讨01Word格式文档下载.docx_第3页
第3页 / 共12页
pH电位图原理在环境化学中应用的探讨01Word格式文档下载.docx_第4页
第4页 / 共12页
pH电位图原理在环境化学中应用的探讨01Word格式文档下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

pH电位图原理在环境化学中应用的探讨01Word格式文档下载.docx

《pH电位图原理在环境化学中应用的探讨01Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《pH电位图原理在环境化学中应用的探讨01Word格式文档下载.docx(12页珍藏版)》请在冰豆网上搜索。

pH电位图原理在环境化学中应用的探讨01Word格式文档下载.docx

0.059  (aA)a

Eh=E0―――log――――                (1)

   n   (aB)b

式中:

Eh―电极电位(伏),ΔG0

E0值可由查表得到或由反应的标准自由能变化ΔG0求出:

E0=――――

23060n

1.2无电子迁移,而离子活度只与pH有关的反应:

aA+mH+=bB+cH2O

l  (aB)b

pH=pH0―――log――――                

(2)

    m  (aA)a

-ΔG0

pH0=―――

1364m

1.3有电子迁移,而E0与pH有关的氧化―还原反应。

aA+mH++ne=bB+cH2O

25℃时,反应的电极电位为:

m0.059  (aA)a

Eh=E0―0.059―pH+―――log―――    (3)

     n n(aB)b

-ΔG0

根据化学平衡的原理,可按以下几个步骤绘制研究体系给定条件下的pH-电位图:

Ⅰ.确定体系可能发生的各类反应及其中每个反应的平衡方程式;

Ⅱ.利用参与反应的各组分的热力学数据计算反应的ΔG0,从而求得反应的平衡常数K或标准电极电位E0;

Ⅲ.根据上述通式导出体系中各个反应的电极电位Eh及pH的计算公式;

Ⅳ.根据及pH的计算公式,在指定离子活度或气相分压的条件下,算出各个反应在一定温度下的E0与值;

最后表示在以E0为纵坐标和以pH为横坐标的图上。

上诉三种反应类型在pH-电位图上分别呈现图1(a)、(b)、(c)所示的不同线性。

图1pH-电位图三种类型平行线

由图可知,在pH-电位图中三种类型的平衡线斜率是不同的。

(1)类反应由于没有H+离子参与,平衡线是一条与pH坐标平行的水平线,斜率为零;

(2)类反应由于没有电子转移,反应的平衡与E0无关,平衡线是一条与Eh坐标平行的垂直线,斜率为无穷大;

第(3)类反应的平衡既与Eh有关又与pH有关,因而在pH-电位图上是一条斜线,斜率为-2.303RT.m/23060n。

常见的pH-电位图都是在指定有关物质活度时作出的,显然,这些平衡线的位置将随着有关物质的活度的改变而改变。

对第

(1)类平衡线而言,当A物质活度降低时,水平线向下平移,对于第

(2)类平衡线而言,当A物质的活度降低时,垂直线向右平移。

2.水的热力学稳定区

水的热力学稳定区域对判断各种物质与水发生相互作用的可能性提供了理论依据,同时它又是pH-电位图的组成部分。

水溶液中存在着氢离子和氢氧离子以及水分子。

在给定条件下,如果水溶液中有电极电位比氧电极电位更正电性的氧化剂存在,水就可能被氧化,在酸性介质中决定于电化学反应O2+4H++4e=2H2O或碱性介质中决定于化学反应O2+2H2O+4e=2OH-的氧电极电位可以下式表示:

Eh(O2/OH-)=1.23-0.059pH+0.015logPO2(4)

如果溶液中有电极电位比氢电极电位更负的还原剂存在,还原过程就可能发生。

在酸性介质中决定于化学反应2H++2e=H2或者在碱性介质中决定于电化学反应2H2O++2e=H2+2OH-的氢电极电位(25℃)可以下式表示:

Eh(H+/H2)=-0.059pH-0.029logPH2

(2)

根据方程(4)、(5),在PO2和PH2各等于1大气压的条件下氢电极电位与氢电极电位与溶液的pH分别有如图2所示的直线①和②的关系。

这两条直线把整个pH-电位图分成了Ⅰ、Ⅱ、Ⅲ三个区域。

在①线之上发生氢氧根的氧化4O-→2H2O+O2+4e,因此,在①线之上区域,水不稳定,要分解析出氧。

在线②以下,因为电位比平衡电位为负,发生H+离子还原,H++e→1/2H2,②线以下的区域,水也是不稳定的,要分解析出氢。

在①线以下的区域,电位图2水的热力学稳定区

比平衡电位为负,发生氧还原为氢氧根O2+2H2O+4e→4OH-,在②线以上,电位比平衡值为正,则发生氢的氧化,H2→2H++2e,可见在①线和②线包括的范围内,水是稳定的。

3.土壤pH-电位图

土壤中的氧化还原体系比较复杂。

O2—H2O体系的反应式可表示如下:

2H2O

O2+4H++4e-,25℃时,其Eh=1.23-0.059pH+0.015logPO2。

H2体系的反应式可表示如下:

H2

2H++2e,25℃时,其Eh为:

Eh=-0.059pH-0.0295logPH2。

O2-H2O系和H2体系是组成土壤氧化还原的两个极端体系,土壤中其他氧化还原体系介于两者之间。

这两个体系Eh与pH的关系是两个直线方程式,构成了土壤氧化还原电位上、下限。

pH-电位图示于图3。

土壤的pH-电位区域位于上、下限之间。

 

图3土壤pH-电位图

1、旱地土壤

2、潮湿土壤

3、水分过饱和土壤

4.天然水体及土壤环境中的硫行为

硫—H20系主要有以下反应:

HSO4-

H++SO42-

(1)

pH=1.9(25℃时)

H2S

H++HS-

(2)

pH=7.0

HS-

H++S2-(3)

pH=12.6

S0+4H2O

SO42-+8H++6e(4)

Eh=0.357-0.079pH+0.0098log[SO42-]

HSO4-+7H++6e(5)

Eh=0.338-0.069pH+0.0098log[HSO42-]

H2S+4H2O

SO42-+10H++8e(6)

             [SO42-]

Eh=0.303-0.074pH+0.0074log――――

             [H2S]

S0+2H++2e(7)

Eh=0.142-0.059pH-0.0295log[H2S]

HS-+4H2O

SO42-+9H++8e(8)

            [SO42-]

Eh=0.252-0.066pH+0.0074log――――

             [HS_]

S2-+4H2O

SO42-+8H++8e(9)

Eh=0.159-0.059pH+0.0074log――――

             [S2_]

根据以上九个反应的pH-电位图关系式可绘出25℃,总硫为10-3M时的pH-电位图(图4)。

从图可看出,有一个素硫的稳定区。

但当H2S浓度降低(7)式的电位变正,SO42-或HO42-浓度降低,(4)、(5)式的电位变负时,硫的稳定区缩小,最后消失到SO42-,HSO42-与H2S的界面。

当绘制10-3M琉璃子浓度溶液的pH-电位图时可看出这一点。

当pH<

1.9时,电位下降,HSO42-还原为元素S,电位进一步下降时还原成H2S;

电位上升时H2S先被氧化成S,再氧化成HSO4-;

pH在1.9至5.4范围内,电位下降时,SO42-还原成元素S,再还原为H2S;

反之电位上升时,H2S氧化成S再氧化成SO42-。

pH>

7时,电位下降时SO42-还原为HS-,电位上升时HS-氧化成SO42-。

从图可见,天然水体的pH,Eh范围位于SO42-的稳定区,天然水体中的硫是以SO42-形式存在的。

S2-不稳定,进入水体中的S2-很快被氧化SO42-。

对天然水体的监测结果证实了这一点。

在沉积物中,由于氧化还原电位较低,硫则多以金属硫化物的形态存在,有利于水体的净化。

土壤中的硫对重金属的迁移和转化有重要意义。

土壤中硫的含量一般为0.05%,以无机硫和有机硫两种形态存在,有机硫经微生物分解和矿化后,形成硫和多硫化物,在氧化条件下,形成硫酸盐形态,在较强的还原条件下,即成为硫化氢或金属硫化物。

5.重金属及硫化物在天然水体及土壤环境中的行为

天然水体的pH和Eh是控制和影响水体重金属稳定性最重要的环境因素。

天然水体的氧化还原电位与水体pH密切相关。

通常,沉积物/水界面的Eh梯度控制着水体重金属形态的变化,一般与大气压接触的表层水多呈氧化态,其Eh可为+300~+600毫伏,而沉积物则多为弱氧化态以至强还原态,其Eh为+100~-400毫伏。

表层沉积物/水界面多呈弱氧化态,而深层沉积物则多处于还原态。

水体pH的变化影响天然水体中各结合态金属的化学稳定性及金属的平衡分布状态。

一般天然水体pH变化范围较大,可为5.0~8.0,沉积物pH与水体相关,表层沉积物通常为6.1~9.0,深层略低些。

土壤环境中,成分复杂,化学反应纵横交错,重金属含量甚微却呈现多种化合态,参与多种化学反应。

难以详细描述其化学行为。

我们借鉴较单纯的水溶液pH-电位图,推断土壤溶液中重金属化学行为。

重金属作为过渡元素在天然水体和土壤环境的不同条件下,价态变化是通过氧化还原反应实现的,反应方向由环境的氧化还原特性所支配。

现以Hg、Cd、Cr、As、S为例,Hg、Cd、Cr、As等能形成难溶性的化合物,固定于沉积物或土壤中,反之转化为氧化条件时,则增加了它的可溶性。

As等则完全相反。

5.1汞的行为

汞的pH-电位图(25℃)示于图5。

从图5可见,汞在水溶液中的价态为Hg2+、Hg22+、Hg0(金属汞)。

在还原区域中,不但可形成硫化物的沉淀物,而且还可还原成金属汞。

当溶液中Cl-的浓度增大时,则HgCl2的区域增大,如图中虚线所示。

天然水体中,含汞极少,一般不超过0.1ug/L,根据其pH、Eh范围可知,汞以Hg0或Hg2+的形式存在,电位下降,Hg2+还原为Hg0,电位上升Hg0氧化为Hg2+;

在沉积物中则以HgS22-形式存在。

土壤中可能存在金属汞及无机汞化合物:

Hg0、HgS、HgCO3、HgHPO4、HgCl2、Hg(NO3)2,除HgCl2、Hg(NO3)2外大多数是难溶的,固定于土壤中。

许多汞的化合物容易被土壤中还原性物质还原成金属汞。

Hg22+→Hg2++Hg0。

将土壤pH-电位图投影于汞的pH-电位图中,可见,石灰性旱地土壤可能以氢氧化汞一类的难溶性汞为主,或者按Hg(OH)2→HgO+H2O反应形成难溶氧化汞。

从图还可看出,在水稻土中,有金属汞,还可能有少量硫化汞。

此外,当污染土壤中氯离子含量增高时,导致可溶性HgCl2增多。

淹水还原,降低土壤的Eh,有利于难溶性硫化汞生成。

5.2镉的行为

天然水体及土壤溶液中镉离子的浓度与土壤氧化还原电位密切相关。

镉的pH-电位图(图6)清楚地表明镉的形态。

在常见的天然水体pH及Eh范围内。

镉大多都是以Cd2+形式存在。

在沉积物中由于氧化还原电位降低则多以硫化物、碳酸盐和氢氧化物的形式出现,水体pH降低可导致碳酸盐和氢氧化物结合的镉溶解析出。

在常见的土壤pH范围内,随着土壤氧化还原电位的降低,就可能形成难溶性的硫化镉,导致土壤溶液中镉离子浓度下降。

反之,当土壤脱水时,随着氧化还原电位上升,土壤溶液中镉离子浓度逐渐增加。

从图6还可以看出,随着pH值得升高,将产生难溶性镉的沉淀。

5.3铬的行为

天然水体及土壤溶液中的铬主要有三价和六价两种价态。

它们的价态和转化情况显示在铬的pH-电位图(7)中。

从图中可见其价态受氧化还原反应和pH所制约。

六价铬(Cr2072-)的废水排入环境中,若保持其易溶的铬酸盐态必须有较高的

氧化还原电位。

土壤的氧化还原电位只有数百毫伏,而渍水土壤多数在十毫伏以下。

因此当Cr2072-进入水田时,就会迅速地还原成难溶性的三价铬化合物固定在土壤中。

提高pH或降低氧化还原电位,可促使六价铬还原为三价。

从而减轻铬对环境的污染。

5.4砷的行为

就水环境和土壤环境中砷的价态而言,主要有三价和五价之分,而且受氧化还原电位所制约,砷盐中以三价砷的毒性最大,砷酸的pH-电位图对研究砷在环境中的行为有一定的实际意义。

天然水体中有亚砷酸盐形式存在。

随着水体溶解氧的增加,氧化还原电位升高。

亚砷酸盐氧化为砷酸盐,可减轻砷的危害。

氧化还原电位下降,砷酸盐还原成亚砷酸盐。

沉积物中的砷以亚砷酸盐形态存在。

在土壤中,与Cd、Cr相反,随着氧化还原电位的下降(如淹水还原),砷酸还原成亚砷酸盐从而加重了环境的危害。

5.5金属硫化物的行为

金属硫化物的行为(MeS)在水环境及土壤环境中的各种变化的条件和热力学规律,可通过MeS-H2O系pH-电位图了解清楚。

现以ZnS-H2O系为例加以说明。

25℃、PO2、pH2指定为1大气压,Zn2+、ZnO22-、H2S及含硫离子活度均为0.1时绘出的ZnS-H2O系pH-电位图示于图9

当有氧存在时,几乎所有的MeS在任何pH范围内的水溶液都是不稳定的相,都能被氧化。

在不同的pH和Eh下进行下列四种类型的反应:

Ⅰ.2MeS+O2+4H+=2Me++2e+2H2O

Ⅱ.MeS+O2=Me2++SO42-

Ⅲ.MeS+2O2+2H2O=Me(OH)2+SO42-+2H+

Ⅳ.MeS+2O2+2H2O=MeO22-+SO42-+4H+

天然水中,ZnS氧化成ZnSO4.Zn(OH)2的形式存在。

但当电位下降时,则还原为ZnS。

沉积物中则以ZnS的形态存在。

土壤中,除水分过饱和土壤中ZnS不被氧化外,在旱地土壤和潮湿土壤都会被氧化,不同的pH下分别得到图9所示的不同产物。

本文应用pH-电位图对硫、重金属及其硫化物在天然水体和土壤环境中的行为进行了初步探讨;

为深入研究pH-电位图原理在环境化学中的应用,分析重金属及硫化物在天然水体及土壤环境中的迁移、演变规律,建立水化学和土壤环境化学的完整理论有借鉴作用。

参考文献

[1]杨国治,土壤中氧化还原反应与重金属的危害,环境科学丛刊,4卷3期1—7页(1983);

[2]栾兆坤,水体重金属稳定性问题,环境科学丛刊,6卷1期35—42页(1985);

[3]傅崇说,冶金溶液热力学原理与计算,1979,冶金工业出版社;

[4]徐采栋,锌冶金物理化学,1978,冶金工业出版社;

[5]中南矿冶学院,湿法冶金和电化学,1968。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1