数学资料复习.docx
《数学资料复习.docx》由会员分享,可在线阅读,更多相关《数学资料复习.docx(15页珍藏版)》请在冰豆网上搜索。
数学资料复习
植树问题
1非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距+1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
1 .每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
小学数学图形计算公式
1、正方形(C:
周长S:
面积a:
边长)
周长=边长×4C=4a
面积=边长×边长S=a×a
2、正方体(V:
体积a:
棱长)
表面积=棱长×棱长×6S表=a×a×6
体积=棱长×棱长×棱长V=a×a×a
3、长方形(C:
周长S:
面积a:
边长)
周长=(长+宽)×2C=2(a+b)
面积=长×宽S=ab
4、长方体(V:
体积s:
面积a:
长b:
宽h:
高)
(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)
(2)体积=长×宽×高V=abh
5、三角形(s:
面积a:
底h:
高)
面积=底×高÷2s=ah÷2
三角形高=面积×2÷底三角形底=面积×2÷高
6、平行四边形(s:
面积a:
底h:
高)
面积=底×高s=ah
7、梯形(s:
面积a:
上底b:
下底h:
高)
面积=(上底+下底)×高÷2s=(a+b)×h÷2
8、圆(S:
面积C:
周长d=直径r=半径)
(1)周长=直径×=2××半径C=d=2r
(2)面积=半径×半径×s=
9、圆柱体(v:
体积h:
高s:
底面积r:
底面半径c:
底面周长)
(1)侧面积=底面周长×高=ch(2r或d)
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高(4)体积=侧面积÷2×半径
10、圆锥体(v:
体积h:
高s:
底面积r:
底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数(和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
14、差倍问题
差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)
常用单位换算
长度单位换算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米
面积单位换算
1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米
1平方分米=100平方厘米1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升
1立方厘米=1毫升1立方米=1000升
重量单位换算
1吨=1000千克1千克=1000克1千克=1公斤
人民币单位换算
1元=10角1角=10分1元=100分
时间单位换算
1世纪=100年1年=12月大月(31天)有:
18月小月(30天)的有:
49月
平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时
1时=60分1分=60秒1时=3600秒
小学数学的所有概念
一、代数知识
整数
1.整数 自然数和0负整数都是整数。
2.计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
3. 数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
4.质数 :
一个数除了1和它本身,不再有其它的因数(约数),这个数叫做质数(质数也叫做素数)。
5.合数 :
一个数除了1和它本身,还有别的因数,这个数叫做合数 。
注意:
1只有一个因数,就是它本身,1既不是质数,也不是合数。
最小的质数是2,也是质数中唯一的一个偶数(偶数解释见下), 其余的质数均为奇数(奇数解释见下)。
6. 互质数:
只有公因数“1”的两个数。
成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
7. 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
8.偶数:
偶数就是2的倍数的自然数(包括0)也叫做双数。
偶数通常用“2k”表示。
9.奇数:
奇数就是不是2的倍数的自然数,也叫做单数。
奇数通常用2k+1表示
注:
偶数除了2以外都是合数。
10.自然数:
表示物体的数量的数,最小的自然数是“0” 自然数也是整数。
0是正整数与负整数的分界线。
11.公因数:
两个数公有的因数。
公倍数:
两个数公有的倍数。
12.质因数:
把一个合数分解成几个质数相乘的形式,这几个质数叫作这个合数的质因数。
分解质因数:
把一个合数分解成几个质数相乘的形式,这个过程叫做分解质因数。
2倍数的特征:
个位上的数字是0,2,4,6,8
3倍数的特征:
各位上的数字之和是3的倍数
5倍数的特征:
个位上的数字是0,5
9倍数的特征:
各位上的数字之和是9的倍数.
能被4或25整除数的特征:
末两位上的数是4或25的倍数.
能被8或125整除数的特征:
末三位数是8或125的倍数.
小数:
小数的基本性质:
在小数末尾添上”0”或去掉”0”,小数的大小不变。
小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
小数的计数单位是0.1、0.01、0.001…….或、………
小数的分类
纯小数:
整数部分是零的小数,叫做纯小数。
例如:
0.25 、 0.368 都是纯小数。
带小数:
整数部分不是零的小数,叫做带小数。
例如:
3.25 、 5.26 都是带小数。
有限小数:
小数部分的数位是有限的小数,叫做有限小数。
例如:
41.7 、 25.3 、 0.23 都是有限小数。
无限小数:
小数部分的数位是无限的小数,叫做无限小数。
例如:
4.33 …… 3.1415926 ……
无限不循环小数:
一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:
∏
循环小数:
一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如:
3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:
3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
纯循环小数:
循环节从小数部分第一位开始的,叫做纯循环小数。
例如:
3.111 …… 0.5656 ……
混循环小数:
循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环 节只有 一个数字,就只在它的上面点一个点。
例如:
3.777 …… 简写作 0.5302302 …… 简写作 。
分数
分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
分数的分类
真分数:
分子比分母小的分数叫做真分数。
真分数小于1。
假分数:
分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:
假分数可以写成整数与真分数合成的数,通常叫做带分数。
将一个分数的分子与分母同时除以他们的最大公因数,这个过程叫约分.而得到的这个分数叫最简分数。
最简分数:
分母与分子互质的时候.这个分数就叫最简分数。
将几个异分母的分数利用分数的基本性质将分母变成一样.这个过程叫通分.在分数大小的比较中会广泛遇到通分。
分数的基本性质:
分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。
百分数通
常用"%"来表示。
百分号是表示百分数的符号。