永磁同步电机矢量控制仿真Word文档下载推荐.docx

上传人:b****6 文档编号:21991742 上传时间:2023-02-02 格式:DOCX 页数:12 大小:205.77KB
下载 相关 举报
永磁同步电机矢量控制仿真Word文档下载推荐.docx_第1页
第1页 / 共12页
永磁同步电机矢量控制仿真Word文档下载推荐.docx_第2页
第2页 / 共12页
永磁同步电机矢量控制仿真Word文档下载推荐.docx_第3页
第3页 / 共12页
永磁同步电机矢量控制仿真Word文档下载推荐.docx_第4页
第4页 / 共12页
永磁同步电机矢量控制仿真Word文档下载推荐.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

永磁同步电机矢量控制仿真Word文档下载推荐.docx

《永磁同步电机矢量控制仿真Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《永磁同步电机矢量控制仿真Word文档下载推荐.docx(12页珍藏版)》请在冰豆网上搜索。

永磁同步电机矢量控制仿真Word文档下载推荐.docx

矢量控制的目的是为了改善转矩控制性能,而最终实施仍然是落实到对定子电流(交流量)的控制上。

由于在定子侧的各个物理量,包括电压、电流、电动势、磁动势等等,都是交流量,其空间矢量在空间以同步转速旋转,调节、控制和计算都不是很方便。

因此,需要借助于坐标变换,使得各个物理量从静止坐标系转换到同步旋转坐标系,然后,站在同步旋转坐标系上进行观察,电动机的各个空间矢量都变成了静止矢量,在同步坐标系上的各个空间矢量就都变成了直流量,可以根据转矩公式的几种形式,找到转矩和被控矢量的各个分量之间的关系,实时的计算出转矩控制所需要的被控矢量的各个分量值,即直流给定量。

按照这些给定量进行实时控制,就可以达到直流电动机的控制性能。

由于这些直流给定量在物理上是不存在的,是虚构的,因此,还必须再经过坐标的逆变换过程,从旋转坐标系回到静止坐标系,把上述的直流给定量变换成实际的交流给定量,在三相定子坐标系上对交流量进行控制,使其实际值等于给定值。

下面进行详细介绍。

2.1 坐标变换理论

矢量变换控制中涉及到的坐标变换有静止三相-静止二相,以及静止二相-旋转二相的变换及其逆变换。

抽象成坐标系间的关系就是从静止as-bs-cs坐标系向静止

A-B坐标系的变换,以及变量从静止A-B坐标系向同步速旋转d-q坐标系变换。

现对各坐标轴之间的电流转换公式总结如下:

坐标与

坐标转换关系

(1)

坐标的转换关系

(2)

(3)

(4)

上述几式是电流的转换,电压的转换与电流的转换相同。

(1)~(4)是恒功率变换,恒功率变换中三相坐标和两相坐标中计算得到的功率是相等的。

实际中还有一种恒幅值变换,即电流电压的幅值在三相坐标和两相坐标中相等,但功率在两相坐标中需要乘以1.5才是实际功率,控制中使用恒幅值变换感觉更方便一些。

(5)

而且实际中由于三相平衡,往往只检测两相电流,所以还有一种基于恒幅值的U-V=>

的变换:

(6)

实际对称三相系统中式(6)使用较多。

2.2永磁同步电动机控制理论

根据永磁同步电动机控制理论,永磁同步电动机具有正弦形的反电动势波形,其定子电压、定子电流也应该为正弦波。

假设电动机是线性的,参数不随温度等变化,忽略磁滞、涡流损耗,转子无阻尼绕组,那么基于旋转坐标系d,q中的永磁同步电动机定子磁链方程为:

(7)

其中:

ψr为转子磁钢在定子上的耦合磁链;

Ld、Lq为永磁同步电动机的d,q轴主电感,Id、Iq为定子电流矢量的d,q轴主电流。

根据在两相绕组中,旋转坐标系下的永磁同步电机定子电压矢量方程式,整理出永磁同步电动机在d,q轴上两个分量的定子电压方程式:

(8)

Vd、Vq为定子电压矢量V的d,q轴分量,ωr为转子旋转角速度。

与前面的从两相静止坐标α、β变换到两相旋转坐标d,q一样,直接写出电压回路方程式也要有一定的条件。

在认为旋转坐标系的旋转角频率与转子旋转角频率一致,并且当d轴与转子主磁通方向一致时,将

(1)的定子磁链方程式代入

(2)的定子电压方程式就得到永磁同步电机转子磁通定向的电压回路方程式:

(9)

电磁转矩方程为:

(10)

P为电机的极对数。

在永磁同步电动机中,由于转子磁链恒定不变,所以都是采用转子磁链定向方式来控制永磁同步电动机的。

在基速以下恒转矩运行区中,采用转子磁链定向的永磁同步电动机定子电流矢量位于q轴,无d轴分量,即

Iq=I,Id=0,定子电流全部用来产生转矩,而对于面贴式永磁电机而言,气隙均匀,Ld=Lq,此时永磁同步电动机的电压方程可写为:

(11)

电磁转矩方程可简化为:

(12)

由上述永磁同步电机的数学模型的分析可知:

定子电流在

轴上的分量决定电磁转矩的大小。

永磁同步电机矢量控制的实质就是通过对定子电流的控制来实现交流永磁同步电动的的转矩控制。

转速在基速以下时,在定子电流给定的情况下,控制

,可以更有效的产生转矩,这时电磁转矩

,电磁转矩就随着

的变化而变化。

在控制系统只要控制

大小就能控制转速,实现矢量控制。

永磁同步电机矢量控制很容易实现,只要使实际的

与给定的

相等,也就满足了实际控制的要求。

在实际控制中,向电机定子注入的和从定子检测的电流都不是

而是三相电流,所以必须进行坐标变化。

又因为d,q坐标系是定在电机转子上的旋转坐标系,所以要实现坐标变化必须在控制中实时检测电机转子的位置。

图2是永磁同步电机的矢量控制原理图。

由图可知,永磁同步电机位置交流伺服系统矢量控制有下面几部分组成:

位置速度检测模块、位置环、速度环、电流环控制器、坐标变换模块、SVPWM模块、整流和逆变模块。

本文只作相关仿真,不设位置速度检测模块。

控制过程为:

位置信号指令与检测到的转子位置相比较,经过位置控制器的调整,输出速度指令信号,速度指令信号与检测到转子速度信号相比较,经速度控制器的调节,输出

指令信号(电流控制器得给定信号)。

同时经过坐标变换,定子反馈的三相电流变为

,通过电流控制器使

=0,

相等,电流控制器的输出为

轴的电压经坐标变化变为

电压,通过SVPWM模块输出六路PWM驱动IGBT,产生可变频率和幅值的三相正弦电流输入电机定子。

实现矢量控制,需要进行坐标变换,各坐标轴之间的关系如上图2。

3.仿真模型的建立

根据上述原理,构建永磁同步电机模型如图3所示,其中电机参数和图4,其它仿真参数如表1,给电机转矩TL=5。

表1仿真参数

n-PI

Id-PI

Iq-PI

Kp

0.5

30

Ki

5

3000

output-limits

-18~+18

-310~+310

Ud

320

n*

2000

Ts

1e-4

Id*

图3永磁同步电动机矢量控制仿真模型

图4永磁同步电机参数

4、仿真结果及分析

图4定子三相电流,转速及电磁转矩波形

图5SVPWM输入

由仿真波形可以看出,在额定转速n=2000r/min的参考转速下,系统起动响应快速,转速能很好地控制在给定,定子三相电流和转矩在电机转动开始波动只有稳定时的2到2.5倍,且很快稳定,具有较好的特性。

波形符合理论分析,系统运行稳定,具有较好的静、动态特性。

从上述的仿真,我们可以知道为保证起动过程达到设计要求,既要根据PMSM数学模型选择和设计合适的仿真模型,又要合理设定仿真参数。

采用该PMSM矢量控制系统仿真模型,可快捷验证控制算法,也可对其进行简单修改或替换,完成控制策略的改进,通用性较强,且其本身模型也简单易于实现。

(注:

本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1