数字频率计毕业论文Word文档格式.docx

上传人:b****7 文档编号:21873615 上传时间:2023-02-01 格式:DOCX 页数:34 大小:2.94MB
下载 相关 举报
数字频率计毕业论文Word文档格式.docx_第1页
第1页 / 共34页
数字频率计毕业论文Word文档格式.docx_第2页
第2页 / 共34页
数字频率计毕业论文Word文档格式.docx_第3页
第3页 / 共34页
数字频率计毕业论文Word文档格式.docx_第4页
第4页 / 共34页
数字频率计毕业论文Word文档格式.docx_第5页
第5页 / 共34页
点击查看更多>>
下载资源
资源描述

数字频率计毕业论文Word文档格式.docx

《数字频率计毕业论文Word文档格式.docx》由会员分享,可在线阅读,更多相关《数字频率计毕业论文Word文档格式.docx(34页珍藏版)》请在冰豆网上搜索。

数字频率计毕业论文Word文档格式.docx

总成绩(百分制)

(是否评定为优秀毕业论文)

1、

指导教师评语

建议成绩指导教师签字:

年月日

2、论文评阅教师评语

建议成绩评阅教师签字:

3、

毕业答亠、丄

辩专家组评语

建议成绩答辩组长签字:

4、毕业设计领导小组推优评语

组长签字:

毕业论文过程评分表(40%)

学生班级:

总分:

内容

态度、纪律

(10%)

用所学知识分析解决问题的能力(20%)

设计(论文)书写和水平(10%)

考核

环节

团结协作有钻研精神

爱护公物文明卫生

遵守纪律

和制度

独立地、熟练地、综合应用所学知识分析解决问题的能力

工作量

难度

取得阶段性成果的水平、学术价值和应用价值

分值

3

4

20

5

评分

评分教师:

评分时间:

毕业论文评阅成绩表(30%)

设计(论文)内容

设计(论文)水平

设计(论文)书写

内容充实、有阶段性成果,即有学术或应用价值。

方案选择、论证、设计、计算正确

如实反映设计成果,有实验数据,

又有理论分析。

中文摘要符合要求

语句通顺符合

逻辑思路清晰

图表和曲线清晰符合规范、文字工整

10

2

毕业论文答辩成绩表(30%)

设计(论文)内容(10%)

回答问题(10%)

设计(论文)质量

内容充实、有足够的难度和工作量,在规定的时间内能够流畅地阐明报告

能够回答与设计(论文)相关的基本问题

和扩展问题

论文有数据,有分析,所用数据可靠、分析正确

学生姓名学生班级:

评分教师:

评分时间:

摘要

关键词

第一章技术指标

1.1整体功能要求

1.2系统结构要求

1.3电气指标

1.4扩展指标

1.5设计条件

第二章整体方案设计

2.1算法设计

2.2整体方框图及原理

第三章单元电路设计

3.1时基电路设计

3.2闸门电路设计

3.3控制电路设计

3.4小数点显示电路设计

3.5整体电路图

3.6整机原件清单

第四章测试与调整

4.1时基电路的调测

4.2显示电路的调测

4-3计数电路的调测

4.4控制电路的调测

4.5整体指标测试

第五章设计小结

5.1设计任务完成情况

5.2问题及改进

5.3心得体会

附录

参考文献

频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期

信号的频率值。

扩展功能可以测量信号的周期和脉冲宽度,其应用十

分的广泛。

在设计的过程,要使其误差小,故要反复认真研究结果,

多次认证,才能得出正确的答案。

关键词脉宽档位转换驱动器

频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。

其扩展功能可以测量信号的周期和脉冲宽度。

数字频率计的整体结构要求如图所示。

图中被测信号为外部信号,

送入测量电路进行处理、测量,档位转换用于选择测试的项目

频率、周期或脉宽,若测量频率则进一步选择档位。

数字频率计整体方案结构方框图

1.3.1被测信号波形:

正弦波、三角波和矩形波。

132测量频率范围:

分三档:

1Hz~999Hz

0.01kHz~9.99kHz

0.1kHz~99.9kHz

1.3.3测量周期范围:

1ms~1s

134测量脉宽范围:

135测量精度:

显示3位有效数字(要求分析1Hz、1kHz和999kHz

的测量误差)。

136当被测信号的频率超出测量范围时,报警.

1.4.扩展指标

要求测量频率值时,1Hz~99.9kHz的精度均为+1

1.5.设计条件

1.5.1电源条件:

+5乂

1.5.2可供选择的元器件范围如下表

型号

名称及功能

数量

NE555

定时器

1片

74151

8选1数据选择器

2片

74153

双4选1数据选择器

7404

六反向器

4518

十进制同步加/减计

数器

74132

四2输入与非门(有

施密特触发器)

74160

十进制同步计数器

3片

C392

数码管

4017

十进制计数器/脉冲

分配器

4511

4线-七段所存译码

器/驱动器

TL084

10K电位器

电阻电容

拨盘开关

1个

门电路、阻容件、发光二极管和转换开关等原件自定

第二章整体方案设计

频率是周期信号每秒钟内所含的周期数值。

可根据这一定义

采用如图2-1所示的算法。

图2-2是根据算法构建的方框图。

被测信号

图2-2频率测量算法对应的方框图

在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s的

闸门信号。

改闸门信号控制闸门电路的导通与开断。

让被测信号送入闸门电路,当1s闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。

测量频率的误差与闸门信号的精度直接相关,因此,为保证在1s内被

测信号的周期量误差在103量级,则要求闸门信号的精度为

10?

量级。

例如,当被测信号为1kHz时,在1s的闸门脉冲期间计数器将计数1000次,由于闸门脉冲精度为10?

,闸门信号的误差不大于0.1s,固由此造成的计数误差不会超过1,符合5*103的误差要求。

进一步分析可知,当被测信号频率增高时,在闸门脉冲精度不变的情况下,计数器误差的绝对值会增大,但是相对误差仍在5*103范围内。

但是这一算法在被测信号频率很低时便呈现出严重的缺点,例如,当被测信号为0.5Hz时其周期是2s,这时闸门脉冲仍未1s显然是不行的,故应加宽闸门脉冲宽度。

假设闸门脉冲宽度加至10s,则闸门导通期间可以计数5次,由于数值5是10s的计数结果,故在显示之间必须将计数值除以10.

图测虽频率的原理框图

 

M-4测屋周期的原理框图

输入电路:

由于输入的信号可以是正弦波,三角波。

而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。

在整形之前由于不清楚被测信号的强弱的情况。

所以在通过整形之前通过放大衰减处理。

当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。

当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。

频率测量:

测量频率的原理框图如图2-3.测量频率共有3个档位。

被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。

时基信号有555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。

被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。

周期测量:

测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。

方波信号中的脉冲宽度恰好为被测信号的1个周期。

方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。

计数器累计的结果可以换算出被测信号的周期。

用时间Tx来表示:

Tx二NTs式中:

Tx为被测信号的周期;

N为计数器脉冲计数值;

Ts为时基信号周期。

时基电路:

时基信号由555定时器、RC组容件构成多谐振荡器,其两个暂态时间分别为

T1=0.7(Ra+RbCT2=0.7RbC

重复周期为T=T1+T2。

由于被测信号范围为1Hz~1MH,如果只采用一种闸门脉冲信号,贝S只能是10s脉冲宽度的闸门信号,若被测信号为较高频率,计数电路的位数要很多,而且测量时间过长会给用户带来不便,所以可将频率范围设为几档:

1Hz~999Hz档

采用1s闸门脉宽;

0.01kHz~9.99kHz档采用0.1s闸门脉宽;

0.1kHz~99.9kHz档采用0.01s闸门脉宽。

多谐振荡器经二级10分频电路后,可提取因档位变化所需的闸门时间1ms0.1ms、0.01ms。

闸门时间要求非常准确,它直接影响到测量精度,在要求高精度、高稳定度的场合,通常用晶体振荡器作为标准时基信号。

在实验中我们采用的就是前一种方案。

在电路中引进电位器来调节振荡器产生的频率。

使得能够产生1kHz的信号。

这对后面的测量精度起到决定性的作用。

计数显示电路:

在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。

在计数的时候数码管不显示数字。

当计数完成后,此时要使数码管显示计数完成后的数字。

控制电路:

控制电路里面要产生计数清零信号和锁存控制信号。

控制电路工作波形的示意图如图2-5.

Ijwjnjnjnjwu”jitl.jltl

m―U~茴雯侑号LI

n-hrurLRnJrLnnnnJ

¥

J、一71锁存信号口

I被测信号II闸门信号HI清零信号v锁存信号

图2-5控制电路工作波形示意

第三章单元电路设计

图3-1时基电路与分频电路

它由两部分组成:

如图3-1所示,第一部分为555定时器组成的振荡器(即脉冲产生电路),要求其产生1000Hz的脉冲.振荡器的频率计算公式为:

f=1.43/((R1+2*R2)*C),因此,我们可以计算出各个参数通过计算

确定了R1取430欧姆,R3取500欧姆,电容取1uF.这样我们得到了比较稳定的脉冲。

在R1和R3之间接了一个10K的电位器便于在后面调节使得555能够产生非常接近1KHz的频率。

第二部分为分频电路,主要由4518组成(4518的管脚图,功能表及波形图详见附录),因为振荡器产生的是1000Hz的脉冲,也就是其周期是0.001s,而时基信号要求为0.01s、0.1s和1s。

4518为双BCD加计数器,由两个相同的同步4级计数器构成,计数器级为D型触发器,具有内部可交换CP和EN线,用于在时钟上升沿或下降沿加计数,在单个运算中,EN

输入保持高电平,且在CP上升沿进位,CR线为高电平时清零。

计数器在脉动模式可级联,通过将Q3连接至下一计数器的EN输入端可实

现级联,同时后者的CP输入保持低电平。

如图3-2所示,555产生的1kHz的信号经过三次分频后得到3

个频率分别为100Hz10Hz和1Hz的方波。

如图3-3所示,通过74151数据选择器来选择所要的10分频、100分频和1000分频。

74151的CBA接拨盘开关来对选频进行控制。

CBA输入001时74151输出的方波的频率是1Hz;

当CBA输入010时74151输出的方波的频率是10Hz;

当CBA输入011时74151输出的方波的频率是100Hz这里我们以输出100Hz的信号为例。

分析其通过

4017后出现的波形图(4017的管脚图、功能表和波形图详见附录)。

4017是5位计数器,具有10个译码输出端,CPCRINH输入端,时钟输入端的施密特触发器具有脉冲整形功能,对输入时钟脉冲上升和下降时间无限制,INH为低电平时,计数器清零。

100Hz的方波作为4017的CP端,如图3-3,信号通过4017后,从Q1输出的信号高电平的脉宽刚好为100Hz信号的一个周期,相当于将原信号二分频。

也就是Q1的输出信号高电平持续的时间为10ms那么这个信号可以

用来导通闸门和关闭闸门。

74+61N

■4

图3-3闸门电路

频率为100H込

的方波

4013的Q1输出信号

图3-4

通过分析我们知道控制电路这部分是本实验的最为关键和难搞

的模块。

其中控制模块里面又有几个小的模块,通过控制选择所要

测量的东西。

比如频率,周期,脉宽。

同时控制电路还要产生74160

的清零信号,4511的锁存信号。

图3-5整制肉欺樽电辭1购显示枫电朋

控制电路。

计数电路和译码显示电路详细的电路如图3-5所示。

74153的CBA接001、010、011的时候电路实现的是测量被测信号频率的功能。

当74153的CBA接100的时候实现的是测量被测信号周期的功能。

当74153的CBA接101的时候实现的是测量被测信号脉宽的功能。

图3-6是测试被测信号频率时的计数器CP信号波形、PT端输入波形、CLR段清零信号波形、4511锁存端波形图。

其中第一个波形是被测信号的波形图、第二个是PT端输入信号的波形图、第三个是计数器的清零信号。

第四个是锁存信号。

PT是高电平的时候计数器

开始工作。

CLR为低电平的时候,计数器清零。

根据图得知在计数之前对计数器进行了清零。

根据4511(4511的管脚图和功能表详见附录)的功能表可以知道,当锁存信号为高电平的时候,4511不送数。

如果不让4511锁存的话,那么计数器输出的信号一直往数码管里送。

由于在计数,那么数码管上面一直显示数字,由于频率大,那么会发现数字一直在闪动。

那么通过锁存信号可以实现计数的时候让数码管不显示,计完数后,让数码管显示计数器计到的数字的功能。

根据图可以看到,当PT到达下降沿的时候,此时4511的LE端的输入信号也刚好到达下降沿

图3-6计数器CP信号波形、PT端输入波形、CLR段清零信号波形、4511锁存端波形图

图3-6,是测量被测信号频率是1.1KHZ的频率的图。

由于

multsisim软件篇幅的关系。

时基电路产生的信号直接用信号发生器来代替。

图中电路1K的信号经过分频后选择的是100Hz的信号为基准信号。

那么这个电路实现测量频率的范围是0.01KHz~9.99KHz的信号的频率。

同时控制电路也实现了对被测信号的周期和脉宽的测量。

当CBA的取一定的值,电路实现一定的测量功能。

在测量频率的时候,由于分3个档位,那么在不同的档的时候,小数点也要跟着显示。

比如CBA接011测量频率的时候,它所测信号频率的范围是0.1KHz~99.9KHz,那么在显示的时候三个数码管的第二个数码管的小数点要显示。

CBA接010测量频率的时候,它所测信号频率的范围是0.01KHz~9.99KHz,那么显示的时候,最高位的数码管的小数点也要显示。

对比一下两个输入的高低电平可以发现CA位

不一样,显示的小数点就不一样。

我们可以想到可以通过74153数据选择器来实现小数点显示的问题。

具体的实现方法见图3-7所示。

图3-8整体电路图

元件

555定时器

一片

8.2K?

一个

两片

5.1K?

三片

三个

LED灯

保护电阻

四个

0.01卩F电容

两个

5V直流电源

导线

若干

第四章测试与调整

首先调测时基信号,通过555定时器、RC阻容件构成多谐振荡器的两个暂态时间公式,选择R仁8.2K?

R2=5.1K?

C=0.01讣把555产生的信号接到示波器中,调节电位器使得输出的信号的频率为1KHz。

同时输出信号的频率也要稳定。

测完后,下面测试分频后的频率,分别接一级分频、二级分频、三级分频的输出端,测试其信号。

测出来的信号频率和理论值很接近。

由于是将示波器的测量端分别测量每个原件的输出端。

下面我在实验中把74151和拨盘开关接

好,通过拨盘开关来控制74151的输出信号,把示波器的测量端接74151的输出端。

在CBA取三个不同的高低电平时,得到三个不同频率的信号。

具体的波形图见图3-2所示。

这里就不再重复了。

这样,

时基电路这部分就测试完毕,没有问题了

由于在设计过程中,控制电路这部分比较难,要花时间在上面设

计电路。

为了节约时间,我在课程设计的过程中就先连接后面的显示电路和计数电路。

首先是对数码管(数码管的管脚图和功能表详见附

录)的显示进行了调测

图4-1显示电路调测连接图

如图4-1所示接好显示电路(这里就只给出一个数码管说明一下)。

然后将4511的5端接地。

然后给4511的6217端分别接高低电平,数码管就会显示对应的数字。

比如6217分别接1000,那么数码管就对应显示数字8.同样,还有两个数码管也按上图接好。

接好后的测试方法同上。

这样,显示电路也就搞好了。

图4-2计数电路调测连接图

计数电路按照图4-2所示连接好,将74160的PT端,~CLR端,

~LD端都接高电平,3个74160级联,构成异步十进制计数器。

同时

4511的5端要接0,在调测的过程中,我忘记将其置零,导致在后面数码管一直不显示数字。

接好后,给最低位的74160一个CP信号。

让函数信号发生器产生一个频率适当的方波。

这样,计数器就开始计

数了。

数码管从000~999显示。

计数电路就这样搞好了。

在调测的过程中,74160的~CLR端,~LD端,4511的5端都是用临时的线连接因为在后面这些端都是连接控制电路产生清零、锁存信号的输出端。

图47控制电路连接图

控制电路的连接图如图4-3所示,其中两个74153的BA端分别

接了01,4017的输入的CP的频率是100Hz,此时的功能是测量范围

是0.1KHz~99.9KHz。

由此得出下面调试波形图4—4:

PT端的输

入信号:

111|>

I

|i|ii|ib

pIq|iI

清零信号—i

■ih・I|||I|||■I*・|■I|

I|N)4

锁存信号

Ijis'

■R

图4-4控制电路调测波形图

由调试波形可以知道电路设计是正确的。

这部分是测量频率的功能

同时控制电路还要实现测量周期和脉宽的功能,在前面已经说明的如何测量周期的算法,它的方法刚好和测量频率的相反,测频率的时候时基信号作为闸门信号,而测量周期是将被测信号作为闸门信号。

图4-5测量周期调测图

图4-6测量周期连接图(部分)

测量周期的时候只需将74153的CBA置100就可以实现了。

当74153的CBA为100的时候,74153的1Y输出的信号为被测信号,在图中接的是函数信号发生器,它产生的是频率为20Hz的方波。

这个信号

作为4017的CP信号。

根据图4-6可以知道74151的输出的信号是被测信号fx,经过4017后的输出信号信号Q1、Q2的脉宽刚好为fx的周期,这个原理在前面测量频率部分已经介绍过,这里就不再重复了。

其中Q1信号非一下,就可以作为74160的~CLR端的清零信号,Q2的信号接74160的PT端作为的闸门信号,在PT一直为高电平的时候计数器计数。

PT的高电平持续的时间刚好为fx的周期。

在闸门导通的时间,即PT一直为高电平的时候,计数器记录标准时基信号通过闸门的重复周期个数。

计数器累计的结果可以换算出被测信号的周期,用时间Tx来表示:

Tx二NTs

式中:

Tx为被测信号的周期;

Ts为时钟信号周期。

根据Ts=1ms,N=50.可以知道被测信号的周期为50ms,在电路中我们给出被测信号的频率为20Hz。

那么测量的结果和理论值是一样的。

以上是对被测信号周期测量的部分。

调测过程中电路的输入输出波形图见图4-7,其中的控制计数器计数的原理和测量频率所用的方法一样。

74160JJPT端愉入信号

74160^CLR端输入信号

4511锁存

端LE信号

图4-7测屋频率电路的调测波形图

最后是测量脉宽部分的调测。

测量脉冲宽度的原理与测量周期的原理十分相似。

所不同的是,它直接用整形后的脉冲信号的宽度tw作为

闸门的导通时间。

在闸门导通的时间内,测量时基信号的重复周期,并由式tw二NTs得出脉冲宽度值。

如图4-8所示,与图4-7对比一下,会发现PT信号,~CLR端信号,锁存信号的脉宽为4-7图中对应的波形脉宽的一半。

那么最终数码管显示的数字应该是25.实际的测量

值也与理论值非常接近。

那么到此,整个控制电路部分实现的控制功能都已经实现了。

到这里,会发现控制电路这个模块在这个课程设计中占的分量。

也是整个设计过程的精华所在。

把控制电路这部分搞定,那么本次的课程设计也就基本完成了。

4.5整体指标测试

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1