储能电站技术方案.docx

上传人:b****2 文档编号:2183021 上传时间:2022-10-27 格式:DOCX 页数:12 大小:135KB
下载 相关 举报
储能电站技术方案.docx_第1页
第1页 / 共12页
储能电站技术方案.docx_第2页
第2页 / 共12页
储能电站技术方案.docx_第3页
第3页 / 共12页
储能电站技术方案.docx_第4页
第4页 / 共12页
储能电站技术方案.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

储能电站技术方案.docx

《储能电站技术方案.docx》由会员分享,可在线阅读,更多相关《储能电站技术方案.docx(12页珍藏版)》请在冰豆网上搜索。

储能电站技术方案.docx

储能电站技术方案

 

储能电站总体技术方案

 

 

1.概述

大容量电池储能系统在电力系统中的应采用已有20多年的历史,早期主要采用于孤立电网的调频、热备采用、调压和备份等。

电池储能系统在新能源并网中的应采用,国外也已开展了一定的研究。

上世纪90年代末德国在Herne1MW的光伏电站和Bocholt2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。

从2003年开始,日本在Hokkaido30.6MW风电场安装了6MW/6MWh的全钒液流电池(VRB)储能系统,采用于平抑输出功率波动。

2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,采用于潮流和电压控制,有功和无功控制。

总体来说,储能电站(系统)在电网中的应采用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应采用。

比如:

削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可把采用电低谷期富余的电储存起来,在采用电高峰的时候再拿出来采用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使采用寿命;优化系统电源布局,改善电能质量。

而储能电站的绿色优势则主要体现在:

科学安全,建设周期短;绿色环境保护,促进环境友好;集约采用地,减少资源消耗等方面。

2.设计标准

GB21966-2008锂原电池和蓄电池在运输中的安全要求

GJB4477-2002锂离子蓄电池组通采用规范

QC/T743-2006电动汽车采用锂离子蓄电池

GB/T12325-2008电能质量供电电压偏差

GB/T12326-2008电能质量电压波动和闪变

GB/T14549-1993电能质量公采用电网谐波

GB/T15543-2008电能质量三相电压不平衡

GB/T2297-1989太阳光伏能源系统术语

DL/T527-2002静态继电保护装置逆变电源技术条件

GB/T13384-2008机电产品包装通采用技术条件

GB/T14537-1993量度继电器和保护装置的冲击与碰撞试验

GB/T14598.27-2008量度继电器和保护装置第27部分:

产品安全要求

DL/T478-2001静态继电保护以及安全自动装置通采用技术条件

GB/T191-2008包装储运图示标志

GB/T2423.1-2008电工电子产品环境试验第2部分:

试验方法试验A:

低温

GB/T2423.2-2008电工电子产品环境试验第2部分:

试验方法试验B:

高温

GB/T2423.3-2006电工电子产品环境试验第2部分:

试验方法试验Cab:

恒定湿热试验

GB/T2423.8-1995电工电子产品环境试验第2部分:

试验方法试验Ed:

跌落

GB/T2423.10-2008电工电子产品环境试验第2部分:

试验方法试验Fc:

振动(正弦)

GB4208-2008外壳防护等级(IP代码)

GB/T17626-2006电磁兼容试验和测量技术

GB14048.1-2006低压开关设备和控制设备第1部分:

总则

GB7947-2006人机界面标志标识的基本和安全规则导体的颜色或数字标识

GB8702-88电磁辐射防护规定

DL/T5429-2009电力系统设计技术规程

DL/T5136-2001火力发电厂、变电所二次接线设计技术规程

DL/T620-1997交流电气装置的过电压保护和绝缘配合

DL/T621-1997交流电气装置的接地

GB50217-2007电力项目电缆设计规范

GB2900.11-1988蓄电池名词术语

IEC61427-2005光伏系统(PVES)采用二次电池和蓄电池组一般要求和试验方法

Q/GDW564-2010储能系统接入配电网技术规定

QC/T743-2006《电动汽车采用锂离子蓄电池》

GB/T18479-2001地面采用光伏(PV)发电系统概述和导则

GB/T19939-2005光伏系统并网技术要求

GB/T20046-2006光伏(PV)系统电网接口特性

GB2894安全标志(neqISO3864:

1984)

GB16179安全标志使采用导则

GB/T178830.2S和0.5S级静止式交流有功电度表

DL/T448能计量装置技术管理规定

DL/T614多功能电能表

DL/T645多功能电能表通信协议

DL/T5202电能量计量系统设计技术规程

SJ/T11127光伏(PV)发电系统过电压保护——导则

IEC61000-4-30电磁兼容第4-30部分试验和测量技术——电能质量

IEC60364-7-712建筑物电气装置第7-712部分:

特殊装置或场所的要求太阳光伏(PV)发电系统

3.储能电站(配合光伏并网发电)方案

3.1系统架构

在本方案中,储能电站(系统)主要配合光伏并网发电应采用,因此,整个系统是包括光伏组件阵列、光伏控制器、电池组、电池管理系统(BMS)、逆变器以以及相应的储能电站联合控制调度系统等在内的发电系统。

系统架构图如下:

储能电站(配合光伏并网发电应采用)架构图

1、光伏组件阵列利采用太阳能电池板的光伏效应将光能转换为电能,然后对锂电池组充电,通过逆变器将直流电转换为交流电对负载进行供电;

2、智能控制器据日照强度以及负载的变化,不断对蓄电池组的工作状态进行切换和调节:

一方面把调整后的电能直接送往直流或交流负载。

另一方面把多余的电能送往蓄电池组存储。

发电量不能满足负载需时,控制器把蓄电池的电能送往负载,保障了整个系统工作的连续性和稳定性;

4、并网逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的380V市电接入采用户侧低压电网或经升压变压器送入高压电网。

5、锂电池组在系统中同时起到能量调节和平衡负载两大作采用。

它将光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使采用。

3.2光伏发电子系统

略。

3.3储能子系统

3.3.1储能电池组

(1)电池选型原则

作为配合光伏发电接入,实现削峰填谷、负荷补偿,提高电能质量应采用的储能电站,储能电池是非常重要的一个部件,须满足以下要求:

Ø容易实现多方式组合,满足较高的工作电压和较大工作电流;

Ø电池容量和性能的可检测和可诊断,使控制系统可在预知电池容量和性能的情况下实现对电站负荷的调度控制;

Ø高安全性、可靠性:

在正常使采用情况下,电池正常使采用寿命不低于15年;在极限情况下,即使发生故障也在受控范围,不应该发生爆炸、燃烧等危以及电站安全运行的故障;

Ø具有良好的快速响应和大倍率充放电水平,一般要求5-10倍的充放电水平;

Ø较高的充放电转换效率;

Ø易于安装和维护;

Ø具有较好的环境适应性,较宽的工作温度范围;

Ø符合环境保护的要求,在电池生产、使采用、回收过程中不产生对环境的破坏和污染;

(2)主要电池类型比较

表1、几种电池性能比较

钠硫电池

全钒液流电池

磷酸铁锂电池

阀控铅酸电池

现有应采用规模等级

100kW~34MW

5kW~6MW

kW~MW

kW~MW

比较适合的应采用场合

大规模削峰填谷、平抑可再生能源发电波动

大规模削峰填谷、平抑可再生能源发电波动

可选择功率型或能量型,适采用范围广泛

大规模削峰填谷、平抑可再生能源发电波动

安全性

不可过充电;钠、硫的渗漏,存在潜在安全隐患

安全

需单体监控,安全性能已有较大突破

安全性可接受,但废旧铅酸蓄电池严重污染土壤和水源

能量密度

100-700Wh/kg

-

120-150Wh/kg

30-50Wh/kg

倍率特性

5-10C

1.5C

5-15C

0.1-1C

转换效率

>95%

>70%

>95%

>80%

寿命

>2500次

>15000次

>2000次

>300次

成本

23000元/kWh

15000元/kWh

3000元/kWh

700元/kWh

资源和环境保护

资源丰富;存在一定的环境风险

资源丰富

资源丰富;环境友好

资源丰富;存在一定的环境风险

MW级系统占地

150-200平米/MW

800-1500平米/MW

100-150平米/MW(h)

150-200平米MW

关注点

安全、相同性、成本

可靠性、成熟性、成本

相同性

相同性、寿命

(3)建议方案

从初始投资成本来看,锂离子电池有较强的竞争力,钠硫电池和全钒液流电池未形成产业化,供应渠道受限,较昂贵。

从运营和维护成本来看,钠硫需持续供热,全钒液流电池需泵进行流体控制,增加了运营成本,而锂电池几乎不需维护。

据国内外储能电站应采用现状和电池特点,建议储能电站电池选型主要为磷酸铁锂电池。

3.3.2电池管理系统(BMS)

(1)电池管理系统的要求

在储能电站中,储能电池往往由几十串甚至几百串以上的电池组构成。

由于电池在生产过程和使采用过程中,会造成电池内阻、电压、容量等参数的不相同。

这种差异表现为电池组充满或放完时串联电芯之间的电压不相同,或能量的不相同。

这种情况会导致部分过充,而在放电过程中电压过低的电芯有可能被过放,从而使电池组的离散性明显增加,使采用时更容易发生过充和过放现象,整体容量急剧下降,整个电池组表现出来的容量为电池组中性能最差的电池芯的容量,最终导致电池组提之前失效。

因此,对于磷酸铁锂电池电池组而言,均衡保护电路是须的。

当然,锂电池的电池管理系统不仅仅是电池的均衡保护,还有更多的要求以保障锂电池储能系统稳定可靠的运行。

(2)电池管理系统BMS的具体功能

⏹基本保护功能

✓单体电池电压均衡功能

此功能是为了修正串联电池组中由于电池单体自身工艺差异引起的电压、或能量的离散性,防止个别单体电池因过充或过放而导致电池性能变差甚至损坏情况的发生,使得全部个体电池电压差异都在一定的合理范围内。

要求各节电池之间误差小于±30mv。

✓电池组保护功能

单体电池过压、欠压、过温报警,电池组过充、过放、过流报警保护,切断等。

⏹数据采集功能

采集的数据主要有:

单体电池电压、单体电池温度(实际为每个电池模组的温度)、组端电压、充放电电流,计算得到蓄电池内阻。

通讯接口:

采采用数字化通讯协议IEC61850。

在储能电站系统中,需和调度监控系统进行通讯,上送数据和实施指令。

⏹诊断功能

BMS应具有电池性能的分析诊断功能,能据实时测量蓄电池模块电压、充放电电流、温度和单体电池端电压、计算得到的电池内阻等参数,通过分析诊断模型,得出单体电池当之前容量或剩余容量(SOC)的诊断,单体电池健康状态(SOH)的诊断、电池组状态评估,以以及在放电时当之前状态下可持续放电时间的估算。

据电动汽车相关标准的要求《锂离子蓄电池总成通采用要求》(目之前储能电站无相关标准),对剩余容量(SOC)的诊断精度为5%,对健康状态(SOH)的诊断精度为8%。

⏹热管理

锂电池模块在充电过程中,将产生大量的热能,使整个电池模块的温度上升,因而,BMS应具有热管理的功能。

⏹故障诊断和容错

如果遇异常,BMS应给出故障诊断告警信号,通过监控网络发送给上层控制系统。

对储能电池组每串电池进行实时监控,通过电压、电流等参数的监测分析,计算内阻以及电压的变化率,以以及参考相对温升等综合办法,即时检查电池组中是否有某些已坏不能再采用的或可能很快会坏的电池,判断故障电

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1