弧齿锥齿轮几何参数设计分解Word文档下载推荐.docx
《弧齿锥齿轮几何参数设计分解Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《弧齿锥齿轮几何参数设计分解Word文档下载推荐.docx(27页珍藏版)》请在冰豆网上搜索。
压力角最为常见。
它与端面压力角αt的关系为
(14-6)
14.1.4弧齿锥齿轮的当量齿轮
直齿锥齿轮的当量齿轮为节圆半径为Rtgδ1、Rtgδ2,齿数为
、
的圆柱齿轮副。
则弧齿锥齿轮的当量齿轮为节圆半径为Rtgδ1、Rtgδ2,齿数为
,螺旋角为β的斜齿圆柱齿轮副。
因此,弧齿锥齿轮在法截面内的啮合,也可以用当量圆柱齿轮副来近似,即它们为一对节圆半径
(14-7)
齿数为
(14-8)
14.2弧齿锥齿轮的重合度(Contactratio)
图14-5弧齿锥齿轮的重合度
重合度ε又称重迭系数,反映了同时啮合齿数的多寡(图14-5),其值愈大则传动愈平稳,每一齿所受的力亦愈小,因此它是衡量齿轮传动的质量的重要指标之一。
简单地来讲,一个齿啮合转过的弧长与其周节的比值即为该齿轮副的重合度。
或者更通俗地讲,一个齿从进入啮合到退出啮合的时间与其啮合周期的比值为齿轮副的重合度ε。
只有重合度
才能保证齿轮副连续传动。
弧齿锥齿轮的重合度包括两部分,端面重合度与轴面重合。
14.2.1端面重合度(Transversecontactratio)
端面重合度又称横向重合度,弧齿锥齿轮的端面重合度可利用当量齿轮进行计算。
计算过程如下
中点锥距,mm
(14-9)
小齿轮齿顶角,度
(14-10)
大齿轮齿顶角,度
(14-11)
小齿轮中点齿顶高,mm
(14-12)
大轮中点齿顶高,mm
(14-13)
中点端面模数,mm
(14-14)
大端端面周节,mm
(14-15)
中点法向基节,mm
(14-16)
中点法向周节,mm
(14-17)
(14-18)
小齿轮中点端面节圆半径,mm
(14-19)
大齿轮中点端面节圆半径,mm
(14-20)
小齿轮中点法向节圆半径,mm
(14-21)
大齿轮中点法向节圆半径,mm
(14-22)
小齿轮中点法向基圆半径,mm
(14-23)
大齿轮中点法向基圆半径,mm
(14-24)
小齿轮中点法向顶圆半径,mm
(14-25)
大齿轮中点法向顶圆半径,mm
(14-26)
小齿轮中点法向齿顶部分啮合线长,mm
(14-27)
大齿轮中点法向齿顶部分啮合线长,mm
(14-28)
中点法向截面内啮合线长,mm
(14-29)
端面重合度。
对直齿锥齿轮和零度锥齿轮,该数值必须大于1.0。
(14-30)
14.2.3轴面重合度(Facecontactratio)
轴面重合度又称纵向重合度。
轴面重合度为齿面扭转弧与周节的比值,即
(14-31)
(14-32)
对于弧齿锥齿轮与准双曲面齿轮轴面重合度εF应不小于1.25,最佳范围在1.25~1.75之间。
总重合度
(14-33)
14.3弧齿锥齿轮几何参数设计计算
图14-6弧齿锥齿轮齿坯参数
弧齿锥齿轮各参数的名称如图14-6所示。
弧齿锥齿轮的轮坯设计,就是要确定这些参数的计算公式和处理方法。
14.3.1弧齿锥齿轮基本参数的确定
在进行弧齿锥齿轮几何参数设计计算之前,首先要确定弧齿锥齿轮副的轴交角、齿数、模数、旋向、螺旋角,压力角等基本参数:
1)弧齿锥齿轮副的轴交角∑和传动比i12,根据齿轮副的传动要求确定。
2)根据齿轮副所要传动的功率或扭矩确定小轮外端的节圆直径d1和小轮齿数z1[格里森二文集],z1一般不得小于5。
弧齿锥齿轮的外端模数m可直接按公式
m=
(14-34)
确定,不一定要圆整。
弧齿轮齿轮没有标准模数的概念。
3)大轮齿数可按公式
Z2=i12Z1(14-35)
计算后圆整,大轮齿数与小轮齿数之和不得少于40,本章后面介绍的非零变位设计可突破这一限制。
4)根据大轮和小轮的工作时的旋转方向确定齿轮的旋向。
齿轮的旋向根据传动要求确定,它的选择应保证齿轮副在啮合中具有相互推开的轴向力。
这样可以增大齿侧间隙,避免因无间隙而使齿轮楔合在一起,造成齿轮损坏。
齿轮旋向通常选择的原则是小轮的凹面和大轮的凸面为工作面。
5)为了保证齿轮副传动时有足够的重合度,设计弧齿锥齿轮副应选择合适的螺旋角。
螺旋角越大,重合度越大,齿轮副的运转将越平稳,但螺旋角太大会增大齿轮的轴向推力,加剧轴向振动,同时会使箱体壁厚增加,反倒引起一些不利因素。
因此,通常将螺旋角选择在30º
~40º
之间,保证轴面重合度不小于1.25。
6)弧齿锥齿轮的标准压力角有16º
、20º
、22.5º
,通常选20º
。
压力角太小会降低轮齿强度,并容易发生根切;
压力角太大容易使齿轮的齿顶变尖,降低重合度。
7)锥齿轮的齿面宽b一般选择大于或等于10m或0.3Re。
将齿面设计得过宽并不能增加齿轮的强度和重合度。
当负荷集中于齿轮内端时,反而会增加齿轮磨损和折断的危险。
14.3.2弧齿锥齿轮几何参数的计算
基本参数确定之后可进行轮坯几何参数的计算,其过程和步骤如下:
小轮、大轮的节圆直径d1、d2
d1=mZ1d2=mZ2(14-36)
外锥距Re
Re=
(14-37)
为了避免弧齿锥齿轮副在传动时发生轮齿干涉,弧齿锥齿轮一般都采用短齿。
格里森公司推荐当小轮齿数z1≥12时,其工作齿高系数为1.70,全齿高系数为1.888。
这时,弧齿锥齿轮的工作齿高hk和全齿高ht的计算公式为
hk=1.70m(14-38)
ht=1.888m(14-39)
当z1<
12时齿轮的齿高必须有特殊的比例,否则将会发生根切。
工作齿高系数、全齿高系数的选取按表14-1进行。
表14-1z1<12的轮坯参数(压力角20º
,螺旋角35º
)
小轮齿数
6
7
8
9
10
11
大轮最少齿数
34
33
32
31
30
29
工作齿高系数fk
1.500
1.560
1.610
1.650
1.680
1.695
全齿高系数ft
1.666
1.773
1.788
1.832
1.865
1.882
大轮齿顶高系数fa
0.215
0.270
0.325
0.380
.0435
0.490
在弧齿锥齿轮的背锥上,外端齿顶圆到节圆之间的距离称为齿顶高,节圆到根圆之间的距离称为齿根高,由图14-6可以看到,全齿高是齿顶高和齿根高之和。
为了保证弧齿锥齿轮副在工作时小轮和大轮具有相同的强度,除传动比i12=1的弧齿锥齿轮副之外,所有弧齿锥齿轮副都采用高度变位和切向变位。
根据美国格里森的标准,高度变位系数取为
x1=-x2=0.39(1-
)(14-40)
大轮的变位系数x2为负,小轮的变位系数x1为正,它们大小相等,符号相反。
因此,小轮的齿顶高hae1和大轮的齿顶高hae2为
hae1=
(14-41)
hae2=
(14-42)
用全齿高减去齿顶高,就得到弧齿锥齿轮的齿根高
hfe1=ht-hae1hfe2=ht-hae2(14-43)
12时,齿顶高、齿根高的计算,按表14-1选取大轮齿顶高系数进行。
弧齿锥齿轮副在工作时,小轮(大轮)的齿顶和大轮(小轮)的齿根之间必须留有一定的顶隙,用以储油润滑油和避免干涉。
由图14-6可知,顶隙c是全齿高和工作齿高之差
c=ht-hk(14-44)
弧齿锥齿轮一般都采用收缩齿,即轮齿的高度从外端到内端是逐渐减小的,其中最基本的形式如图14-6所示,齿轮的节锥顶点和根锥顶点是重合的。
这时小轮的齿根角θf1和大轮的齿根角θf2可按下面的公式确定
(14-45)
这样,小轮的根锥角δf1和大轮的根锥角δf2的计算公式是
δf1=δ1-θf1δf2=δ2-θf2(14-46)
为了保证弧齿锥齿轮副在工作时从外端到内端都具有相同的顶隙,小轮(大轮)的面锥应该和大轮(小轮)的根锥平行。
小轮的齿顶角θa1与大轮的齿顶角θa2应该由公式
θa1=θf2θa2=θf1(14-47)
选取。
因此,小轮的面锥角δa1和大轮的面锥角δa2的计算公式是
δa1=δ1+θa1δa2=δ2+θa2(14-48)
图14-6上的A点称为轮冠,齿轮在轮冠处的直径de1、de2称为小轮和大轮的外径。
由图14-6可以直接推得外径的计算公式
de1=d1+2hae1cosδ1de2=d2+2hae2cosδ2(14-49)
轮冠沿齿轮轴线到齿轮节锥顶点的距离称为冠顶距,由图14-6可知小轮冠顶距Xe1和大轮冠顶距Xe2的计算公式为
Xe1=Recosδ1-hae1sinδ1Xe2=Recosδ2-hae2sinδ2(14-50)
弧齿锥齿轮理论弧齿厚的确定。
如果齿厚不修正,小轮和大轮在轮齿中部应该有相同的弧齿厚,都等于
p。
但除传动比i12=1的弧齿锥齿轮副之外,所有弧齿锥齿轮副都采用高度变位和切向变位。
使小轮的齿厚增加Δ=xt1m,大轮的齿厚减少Δ,这样修正以后,可使大小轮的轮齿强度接近相等。
xt1是切向变位系数,对于α=20º
,β=35º
的弧齿锥齿轮,切向变位系数选取如图14-7所示。
z1<12切向变位系数按表14-2选取,格里森公司称切向变位系数为齿厚修正系数。
表14-2z1<12大轮弧齿厚系数xt1(压力角20º
z1
z2
0.911
0.957
0.975
0.997
1.023
1.053
40
0.803
0.818
0.837
0.860
0.888
0.948
50
—
0.757
0.777
0.828
0.884
0.946
60
0.883
0.945
图14-7弧齿锥齿轮的齿厚修正系数
xt1
z1/z2
选定径向变位系数和切向变位系数后,可按下式计算大小齿轮的理论弧齿厚
(14-51)
(14-52)
式中,S2、S1分别大齿轮及小齿轮的大端端面理论弧齿厚。
βe为大端螺旋角,按公式(14-5)计算。
弧齿锥齿轮副的法向侧隙与齿轮直径、精度等有关。
格里森公司推荐的法向侧隙如表14-3所示。
表14-3法向侧隙推荐值
模数
侧隙
0.64~1.27
0~0.05
7.26~8.47
0.20~0.28
1.27~2.54
0.05~0.10
8.47~10.16
0.25~0.33
2.54~3.18
0.08~0.13
10.16~12.70
0.31~0.41
3.18~4.23
0.10~0.15
12.70~14.51
0.36~0.46
4.23~5.08
0.13~0.18
14.51~16.90
0.41~0.56
5.08~6.35
0.15~0.20
16.90~20.32
0.46~0.66
6.35~7.26
0.18~0.23
20.32~25.40
0.51~0.76
14.4双重收缩和齿根倾斜
上节讨论的弧齿锥齿轮,节锥顶点与根锥顶点重合,齿根高与锥距成正比,齿根的这种收缩情况称为标准收缩。
标准收缩的齿厚与锥距成正比,齿线相互倾斜。
但在实际加工中,为了提高生产效率,弧齿锥齿轮的大轮都用双面法加工。
即用安装有内切刀片和外切刀片的双面刀盘在一次安装中同时节出齿槽和两侧齿面。
因为刀盘轴线在加工时是与齿轮的根锥垂直的,外端要比内端切得深一些,这样就引起轮齿不正常的收缩。
因为齿轮的周节总是与锥距成正比的,齿厚与锥距不成比例地收缩不仅会给加工带来困难,而且还会影响轮齿的强度和刀具的寿命。
因此必须通过双重收缩或齿根倾斜加以修正。
14.4.1双重收缩和齿根倾斜的计算
当大轮采用双面法加工时,理想的大轮齿根角为
θf2≈tgθf2=
(14-53)
当小轮也用双面法加工时,以上公式对小轮也是适合的。
将上式中的s1改为大轮中点弧齿厚s2就可以得到理想的小轮齿根角
θf1=
(14-54)
大轮和小轮的齿根角之和
∑θD=θf1+θf2=
(14-55)
其中s1+s2是齿轮中点的周节,应满足公式zo(s1+s2)=2πR,代入之后就得到公式
∑θD=
(14-56)
式中,zo为冠轮齿数z0=z2/sinδ2。
由式(14-57)算得的角度单位是弧度,欲得角度单位是度,上式应改为
(14-57)
弧齿锥齿轮大轮和小轮都用双面刀盘同时加工两侧齿面的方法称为双重双面法,两齿轮齿根角之和满足(14-57)式的齿高收缩方式称为双重收缩。
令标准收缩的齿根角之和
∑θs=θf1+θf2(14-58)
取∑θD=∑θs得到理想刀盘半径rD为
rD=
(14-59)
式(14-60)可以作为齿轮刀盘半径rD选择的理论基础。
实际的轮坯修正可以这样来进行:
先按(14-58)、(14-60)算出刀盘的理论半径rD,如果实际选用的刀盘半径ro与rD相差不大,则轮坯可以按标准收缩设计;
如果实际选用的刀盘半径r0与rD相差太大,使得小轮两端的槽宽相差太悬殊,那么轮坯就必须修正。
修正时可将选定的刀盘ro代入(14-58)式求得双重收缩的齿根角之和∑θD。
弧齿锥齿轮除小模数齿轮用双重双面法加工之外,在一般情况下都是大轮用双面法加工,小轮用单面法加工,有时用∑θD来作为齿根角之和就显得过大。
为此,格里森公司提出了最大齿根角之和的概念,规定弧齿锥齿轮副的齿根角之和不得大于
∑θm=
(14-60)
实际选用的齿根角之和∑θt,取∑θD和∑θm中的最小值,即
∑θt=min(∑θD,∑θm)(14-61)
图14-8弧齿锥齿轮根锥倾斜
按(14-62)式确定的齿根角之和可能比∑θs大,也可能比∑θs小,这就需要用改变齿轮根锥角的办法来实现,也就是将齿轮的齿根线绕某一点倾斜,这种办法称为齿根倾斜(图14-8所示)。
齿根倾斜,通常有绕中点倾斜(图14-8所示)和绕大端倾斜两种方式。
齿根倾斜之后,轮坯的根锥顶点不再与节锥顶点重合。
当∑θt>∑θs时,根锥顶点落在节锥顶点之外如图14-9(α)所示;
当∑θt<∑θs时,根锥顶点落在节锥顶点之内(图14-9b)。
这时,面锥顶点、根锥顶点三者都不重合,通常把这种设计方式称为“三点式”。
(a)∑θt>∑θs(b)∑θt<∑θs
图1.9齿根倾斜后的情况
14.4.2轮坯修正后的参数计算
实际选用的齿根角之和∑θt确定之后,关键是如何分配大轮和小轮的齿根角并确定齿根绕哪一点倾斜。
格里森公司提出两种分配齿根角的方法,最早提出的方法是将差值∑θt-∑θs平均分配。
即令
Δθf=
(∑θt-∑θs)(14-62)
然后将齿根角θf1和θf2修正为
θ′f1=θf1+Δθfθ′f2=θf2+Δθf(14-63)
齿根绕大端倾斜时,齿轮的齿顶高、齿根高、工作齿高、全齿高都不改变。
但齿轮绕中点倾斜时,齿轮的齿顶高和齿根高都要改变
Δh=
tgΔθf(14-64)
这时齿轮的齿顶高和齿根高都要修正为
h′ae1=hae1+Δhh′ae2=hae2+Δh(14-65)
h′fe1=hfe1+Δhh′fe2=hfe2+Δh(14-66)
同时,齿轮的工作齿高和全齿高也要修正为
h′k=hk+2Δh(14-67a)
h′t=ht+2Δh(14-67b)
上面这种计算方法比较简单,但有时大轮和小轮的齿根角修正后悬殊太大,不够理想,因此,格里森公司于1971年又提出一种新的分配方法,按倾斜点的齿高比例进行分配。
齿根绕大端倾斜时齿根角的计算公式是
θ′f2=
∑θtθ′f1=
∑θt(14-70)
这时齿轮的齿顶高和齿根高不变,常用于理论刀盘半径小于实际刀盘半径的情形。
齿根绕中点倾斜时先要算出中点齿顶高和齿根高的值:
ha1=hae1-
tgθa1ha2=hae2-
tgθa2(14-71)
hf1=hfe1-
tgθf1hf2=hfe2-
tgθf2(14-72)
然后按下列公式确定齿根角
θ′f1=
∑θtθ′f2=
∑θt(14-73)
这样修正后弧齿锥齿轮的齿顶高、齿根高都要跟着改变、常用于理论刀盘半径比实际刀盘半径大的情形。
修正后的齿高参数为
h′ae1=ha1+
tgθ′a1h′ae2=ha2+
tgθ′a2(14-74)
h′fe1=hf1+
tgθ′f1h′fe2=hf2+
tgθ′f2(14-75)
h′k=h′ae1+h′ae2(14-76)
h′t=h′ae1+h′fe1(14-77)
c′=h′t-h′K(14-78)
这几种修正方法都能起到修正轮坯的作用。
要注意的是根锥绕大端倾斜时,齿轮的外径和冠顶距都不改变,但齿根绕中点倾斜时,由于齿顶高变了,所以外径和冠顶距也会跟着改变。
在式(14-49)和(14-50)中将hae1和hae2的值应改为h′ae1、h′ae2重新计算就得到了修正后的值。
齿根绕大端倾斜,外端的几何参数不变,内端的几何参数变化较大。
齿根绕中点倾斜,外端和内端的参数都有变化,比绕大端倾斜的变化要均匀一些。
设计时可根据实际情况选用。
与标准收缩相比,齿根倾斜是一种先进的设计方法,国外应用得很普遍,在设计中应尽量采用这种方法。
最后,把上述轮坯计算公式加以总结,列于表14-4和14-5中。
表14-4弧齿锥齿轮标准参数计算表格
序号
齿轮参数和计算公式
举例
备注
1
∑
轴夹角
2
i12
传动比
3
d1
节圆直径
4
z1
小轮齿数
5
z2=i12z1
大轮齿数(圆整后)
m=d1/z1
模数
d2=mz2
大轮节圆直径
β
螺旋角(左旋/右旋)
α
压力角
节锥角
径向变位系数
12
xt1=-xt2
切向变位系数
按表1-2和图1-7选取
13
Re=0.5d2/sinδ2
外锥距
14
b
齿宽
15
r0
刀盘半径
16
hk=1.70m
hk=
z1<
z1<
12工作齿高系数
fk按表1-1选取
17
ht=1.888m
ht=
12全齿高系数
18
hae1,2=
12齿顶高系数
fa按表1-1选取
19
hfe1,2=
齿根高
20
c=ht-hk
顶隙
21
齿根角
22
δf1,2=δ1,2-θf1,2
根锥角
23
θa1,2=θf2,1
齿顶角
24
δa1,2=δ1,2+θa1,2
面锥角
25
de1,2=d1,2+2hae1,2cosδ1,2
外径
26
Xe1,2=Recosδ1,2-hae1,2sinδ1,2
冠顶距
27
端面压力角
28
修正弧齿厚
表14-5弧齿锥齿轮齿根倾斜参数计算表格
其它计算同前表1-4
θdf1,2=
双重收缩齿根角
∑θd=θdf1+θdf2
双重收缩齿根之和
∑θs=θf1+θf2
标准收缩齿根角之和
z0=z2/sinδ2
与表1-4第(12)项rc相差不大时,选用标准设计,否则按以下进行。