含砷废水的处理办法Word下载.docx

上传人:b****6 文档编号:21742082 上传时间:2023-02-01 格式:DOCX 页数:19 大小:255.49KB
下载 相关 举报
含砷废水的处理办法Word下载.docx_第1页
第1页 / 共19页
含砷废水的处理办法Word下载.docx_第2页
第2页 / 共19页
含砷废水的处理办法Word下载.docx_第3页
第3页 / 共19页
含砷废水的处理办法Word下载.docx_第4页
第4页 / 共19页
含砷废水的处理办法Word下载.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

含砷废水的处理办法Word下载.docx

《含砷废水的处理办法Word下载.docx》由会员分享,可在线阅读,更多相关《含砷废水的处理办法Word下载.docx(19页珍藏版)》请在冰豆网上搜索。

含砷废水的处理办法Word下载.docx

其机理是共沉淀法,在铁沉淀的同时,将砷也从废水中络合除去。

砷酸盐和亚砷酸盐都可以用这种方法处理。

如在处理前用氧化的方法进行预处理,使亚砷酸盐先氧化或高锰酸钾氧化成砷酸盐,其去除效果会更好[21][22]。

其沉淀的pH值可以控制在≥2,在沉降时加入高分子絮凝剂其效果更好[23]。

采用石灰-聚合硫酸铁法对硫酸生产中含砷废水进行了处理,实验了pH值、m(Fe)/m(As)(质量比)、石灰加入量等条件对As去除率的影响。

结果表明,当pH值为8.8-10.6,m(Fe)/m(As)不小于5时,处理后的废水中As的质量浓度小于1mg/L,符合国家排标准[24]。

当用漂白粉作为氧化剂,结合铁盐处理,可以得到铁盐沉淀,出水中的砷含量可降至0.3~0.5mg/L,产生的砷酸钙含砷及锑分别为20及22%,可在玻璃工业中作为脱色剂[25]。

废水中的砷还可以用氯化镧或与硫酸铁一起作用,使砷成砷酸镧沉淀而去除,所得的砷酸镧在pH为3~10.0均比较稳定,适宜于后续处置[26][27]。

当含重金属工业废水中去除砷时,砷可随重金属的沉淀而一起去除,去除率可达90%,在铁存在的情况下,用石灰处理可有效地去除砷,砷含量可降至0.05毫克/升。

如再与氧化钛吸附法结合,出水中的砷含量可以降至5ppb[28]。

由三价铁盐净化含砷废水的废渣,如再与硫酸亚铁溶液混合,并用石灰将pH调整至9,放置数天后,可以得到强磁性的稳定黑色沉淀[29]。

硫酸厂的含砷废水,可以将其pH从1~2用消石灰中和提高至12~12.3,在中和时并加以搅拌及曝气,再与聚丙烯酰胺处理,经过滤后,并加入粘土进行吸附,出水中的砷含量可以降至<0.05mg/L[30]。

也可以用氯进行氧化,使三价砷转化成五价砷,再与足量的消石灰作用使pH调至12,使砷酸钙析出[31]。

利用三价铁和锰的共沉淀作用,可以用来处理含砷废水,pH以9~12间为好[32]。

硫酸亚铁也可用来处理含砷废水,在特定的条件下,处理后的含砷量可以降至0.05毫克/升以下[33][34][35]。

含砷废水可以通过电絮凝法进行处理,当用低碳钢及不锈钢作为阳极及阴极,可用来处理熔炼厂的废水[36]。

1.1.2.铝盐法

用铝盐处理含砷废水,其效果相对较差。

用明矾时,砷的去除效果约为75~79%,亚砷酸盐的去除率只有10~25%。

但在处理亚砷酸盐前,先用氯气等处理,使其先转变成砷酸盐,则其去除率与砷酸盐相同。

1.1.3.硫化物沉淀法

含砷废水,在pH6~7的条件下,加入硫化钠或硫化氢可以开成硫化砷沉淀,并使出水中的砷含量降至0.05毫克/升[37]。

并且发现硫化物沉淀法对砷酸盐有效,也对亚砷酸是无效的。

但在石灰存在下,并在高的pH条件下,对砷酸盐和亚砷酸盐均是有效的.因为在高pH的环境下,亚砷酸盐可以转换成砷酸盐[38]。

在用硫化法处理含砷废水时,如再结合磁效应,则可以加速其沉降速率,提高砷的去除效率[39][40]。

另外硫磺在石灰乳中的溶液也可以处理废水中的砷,如果将此沉淀在取去前在加压釜中125~155℃加热,则可以减少沉淀中砷渗析出的可能[41]。

硫化钠也可以作为砷的沉淀剂来处理含砷废水,当将氧化还原电位势控制在50~70mV时,废水中的99%的砷和铜可以被去除[42]。

用硫化铁FeS对含砷废水可以进行沉淀转化,絮凝和中和的方法进行处理,出水中含砷量在pH2~9时,可以达到<0.5mg/L[43]。

含砷的废水可以用硫化钠来处理[44],例如黄铁矿的洗涤废水,含有22%的游离硫酸及3.5g/L的砷,可以用65g/L的硫化钠(并用硫化氢处理使硫化钠含量为23%硫氢化钠为77%),室温下搅拌1小时,溶解的硫化氢用压缩空气去除,并加入硅藻土作为过滤助剂,经过滤后,废液中的砷含量可以降至0.1mg/L[45]。

用硫化钠处理砷时,也可以在二氧化硫的存在下进行,所得的硫化砷沉淀可以在压热釜中加热至软化点及熔点,可以提高其致密度,密度可以达到2.05g/cm3,使沉淀易于保存及处理。

废水中的砷及锑或其它金属,可以用硫化物处理,去除率可以达到99.97%[46]。

硫化铁也可以用来除去废水中的砷及其它金属[47],如粉碎的FeS在pH在7左右加至废水中,其中含砷5.0ppm,经振摇48小时后过滤,砷的含量可以降至0.0035ppm[48]。

也有报导在pH为3.5时,其去除效率为最好[49]。

在用硫化钠法处理含砷废水时,如能控制氧化还原势在<250mV,再用碳酸钠或消石灰中和,并结合硫酸铁等铁系混凝剂,则效果更好[50]。

在pH≤8的情况下,废水用环状的亚氨基硫代氨基甲酸衍生物处理,可以使砷以固体的形式析出[51]。

在pH≤3的情况下,也可以用二烷基硫代氨基甲酸盐(

NCSSNa,式中R=Me,Et,或n-Bu),可再与硫脲可作为砷的沉淀剂[52][53]。

也可用上述类型的二烷基硫代氨基甲酸有机铵盐,或其多元胺盐,或将其载于多孔树脂上来处理含砷废水[54][55]。

1.1.4.钙镁离子沉淀法

用石灰法是去砷的最经济的方法,但必需首先要将三价砷氧化成五价砷,这样才能取得最好的效果。

这样所得的沉淀溶解度最小,如能加热,并将pH调整至11~13则效果更好[56][57]。

如果对出水要求较高,如要求砷的浓度在~0.5mg/L,则可以考虑再加入磷酸盐,以提高砷的去除效果[58],去除率可以达到99%[59]。

砷可以用碱土金属性离子进行沉淀去除,包括钙,镁及钡等。

三价砷和五价砷与氢氧化钙作用,在碱性条件下可以生成

·

,可以用二阶段进行反应,第一阶段砷的浓度可以降至<10mg/L,而在第二阶段砷的浓度可以减至<0.5mg/L,而第二阶段的污泥回流至第一阶段。

所得的沉淀如能在>700℃加热灼烧,可以使沉淀稳定,砷不易渗出[60]。

如结合其它方法,可以使出水中的砷含量降至<0.3mg/L[61]。

也可以用电石糊,如一含490mgAs/L的废水,先用次氯酸钠溶液进行氧化,再用电石糊将pH调至≥9.5,经过滤后,滤液中的砷含量可以降至6.4mg/L[62]。

如用硫酸镁作为沉淀剂,pH应控制在8.5左右[63]。

可在用氯化镁时,加入石灰,使pH调整至10.0~10.5[64],使用硫酸镁可以使砷的浓度降至5mg/L[65],当镁/砷比为200:

1时,出水中砷浓度可以降至≤0.5mg/L[66]。

废水中的三价砷也可以先用微生物PseudomonasPutida及Alcaligeneseutrophus处理,再用磷酸盐及石灰处理的方法去除[67]。

1.1.5.其它沉淀法

含砷废水如与能水解产生钛酸的化合物作用,则可以共沉淀的原理将砷除去。

如在pH2~8的范围内将含97.08的合成含砷废水用钛酸四异丙酯作用,并在40℃搅拌16小时,经过滤后,废水中的砷含量可以降至0.026~0.054μgAs/ml[68]。

废水中砷还可以用有机胺进行离子浮选法进行处理,如可以用十六烷胺醋酸盐或十八烷胺醋酸盐,与砷反应生成疏水性的沉淀而被去除,当pH值为4.7~5.1时,出水中砷的含量可以降至<0.5mg/L,但如有氯离子及硫酸根离子存在时,会影响砷的去除[69]。

1.2.吸附法

用稀土属物质来去除废水中的有害阴离子,如F,As及Se等。

有些稀土物质在工业中未找到用途,但量大,可用来处理废水,如镧盐可用来沉定砷盐,固体的镧及钇可用来吸附其它有害负离子,也可将镧或钇离子载于多孔的硅胶上以改进其吸附作用[70]。

载有铁的天然或人工沸石也可以有效地从废水中将砷去除[71]。

制铝工业的红泥也可以用来作为砷的吸附剂,在pH9.5的条件下有利于三价砷的去除,而在pH1.1~3.2则有利于五价砷的去除,三价砷的吸附过程是一个放热过程,而五价砷的吸附过程则是一个吸热过程[72]。

由碳酸锰及碳酸铋(Mn:

Bi=1.00:

0.23)混合物在400℃加热4.5小时制成的氧化锰可以用来吸附废水中的砷,其中含的铋可以提高氧化锰对砷的吸附,在pH为4.5~5.0时,及As的浓度为10mg/L时,其吸附容量为7.75mg/g,可以使砷的浓度降至2.3mg/L[73][74]。

由低温电解而制得的二氧化锰,在投加量为2g/L及pH为2时,10ppm的砷可以降至0.15ppm,并可以用氢氧化钠溶液再生[75]。

水滑石

x

,可以从废水中吸附砷,当砷的初始浓度分别为75、100、150mg/L时,其最大的去除率分别为78.2%、74.8%及70.2%。

在pH为8.5时其吸附容量最大,其吸附模式符合Langmuir吸附等温线。

吸附后的砷并可用0.1M的氢氧化钠洗脱下来[76]。

锐钛型的二氧化钛可以用来吸附废水中的砷,如当废水中的砷含量为3ppm,当与100克/10升的上述二氧化钛悬浮液处理,出水中的砷含量可以降至30ppb的水平[77]。

吸附还可以用载铝的沸石[78]、载钼的壳聚糖珠[79]、在用载铁(5%-30%)的灼烧过的硅藻土[80]、膨润土及D202树脂[81]来去除废水中的砷。

铁或氧化铁可以吸附地热水中的砷,如铸铁屑可以用作吸附剂,并可用酸将吸附的砷洗脱下来[82]。

一些制备锌过程产生的含铁废渣,也可以用来作为砷的吸附剂,如废渣中含氢氧化铁45%~52%,氢氧化铝1.3%,氢氧化锌13%~20%及水25~30%可用来吸附砷[83]。

一种由

处理过的石灰石,可以用来吸附砷。

其砷的吸附容量取决于石灰石上所载的铁量。

在pH2~10的范围内,吸附不受pH的影响,并不受

所影响,但磷酸根的存在会大大地影响其吸附性能。

而在pH3.5~10的范围内,吸附在上的砷并无明显的解吸作用[84]。

石灰石最好是来源于珊瑚,这种多孔的石灰石除铁外,铝,镁或再加上戊二醛对砷都有较好的吸附作用[85]。

而沸石载有二价锰或三价铁后都有明显的吸附砷的作用[86]。

活性炭可以用来吸附水中的砷,如用锆,铁,镍,钴或铝在350℃下进行改性,其吸附性能更好,其中以含锆的炭为最好,其次为铁,吸附过程认为是一种对As

的化学吸附,磷酸盐对吸附有抑制作用,含锆炭可以用(0.01~0.1)N氢氧化钠进行再生[87]。

活性炭对砷的吸附,在pH为4~5时为最好,其机理主要是静电吸引及形成特殊的化学键,活性炭的型号对砷的吸附也有较为重要的作用,废水中存在有机污染物对砷的吸附影响不大,但二价铁的存在可以提高对砷的吸附速度,并提高其去除率,强酸或碱可以从活性炭中回收五价砷,但不能完全恢复活性炭的吸附能力[88]。

对活性炭的来源研究发现在碱性条件下,煤>果壳>木材,吸附的砷主要是

As

及HAs

,但在pH低于8时,

不能被吸附,但一旦被氧化成

,就能很快地被吸附。

由于活性炭对亚砷酸有很强的催化氧化的能力,在空气的存在下,很快地被氧化成砷酸而被吸附。

催化的最佳pH为5~6,而在酸性条件下,其活性炭吸附能力依其来源为木材>果壳>煤。

废水中的砷可以用软锰矿(Mn

),磁性黄铁矿(FeS),方铅矿(PbS),纤锌矿(ZnS)等矿石所吸附FeS对三价砷及五价砷的吸附容量分别为0.74及0.82mmol/g[89]。

强碱性的苯乙烯树脂在处理含砷废水时,其去除率可达>99.7%[90]。

在用阴离子交换树脂吸附之前,先用阳离子交换树脂进行处理,可以改善阴离子交换树脂对砷的吸附能力[91]。

分子中含有

N(R)

OH结构的螯合型树脂,其中R=H或C1~5的烷基,以及n=1~6,如AmberliteIRA743,可以用来吸附废水中的砷,其吸附容量为30mg

/mL树脂[92]。

载有单斜或立方晶体水合氧化锆的多孔树脂可以用来吸附锆,这种树脂可以用多孔球形高分子珠体用八水氧氯化锆处理,再经水解及热处理。

水合氧化锆沉积在树脂的一些较大的孔径孔道中,在弱酸性或中性条件下对五价砷有良好的吸附作用,而三价砷要在pH9~10才有较好的吸附作用。

用这种方法处理可以达到日本的工业排放标准(0.1ppm),吸附后可以用1M的氢氧化钠进行再生,而在吸附或再生过程中,锆的渗出是极微小的,所以吸附树脂可反复使用[93][94][95]。

钼酸盐浸渍的壳聚糖颗粒可以pH2.5~3.5的范围内有效地吸附五价砷,其机理是砷与其中钼酸盐发生复合的原因,即使浓度较低,其吸附容量仍很高,可以用来作为废水治理中最后净化的手段,磷酸盐的存在对吸附有一定的抑制作用,其吸附过程符合Langmuir吸附等温线[96]。

可以用季铵化的稻谷来吸附废水中的五价砷,吸附基本上是属于离子交换过程,并符合Langmuir吸附等温线,其最大吸附容量在28±

2℃及pH为7.5时为18.98mg/g。

硫酸根对吸附有抑制作用[97]。

用合成的针铁矿来吸附废水中五价砷,并用气浮法进行固液分离[98]。

用铜浸渍过的锯木炭来吸附三价砷,吸附过程是一级反应,并呈吸热过程,当废水浓度为100mg/L时,在pH1~12间,三价砷的吸附率从1.5%增加至74.9%,过程符合Langmuir吸附等温线,阴离子如氯离子,醋酸根,高氯酸根,碳酸根及磷酸根对过程均无明显影响,含15%的

的0.2M

可用来作为再生剂[99]。

三价砷可以用瓷土进行吸附,过程符合Langmuir吸附等温线,在pH8时有最大的去除能力[100]。

而五价砷的最大去除能力时的pH为6.4[101]。

三氧化二铝也可以用来吸附废水中砷,吸附后可以膜技术进行微滤固液分离,吸附剂可以再生回用[102]。

经过2小时的处理,出水中的砷含量可以降至≤50ppb[103]。

在用氯,次氯酸钠或臭氧预处理后,将三价砷氧化成五价态后,砷还可以用粒状的由电解制得的二氧化锰来吸附去除。

吸附过程不需要对pH进行控制[104]。

飞灰吸附砷时符合Freundlich吸附等温线,其吸附性能与活性炭一样良好,其它存在的离子对吸附影响不大[105]。

可用来吸附废水中的砷的吸附剂还有斜发沸石[106]。

1.3.离子交换法

废水中的砷酸盐和亚砷酸盐还可以有效地用强碱型或弱碱型离子交换树脂去除。

弱碱性阴离子交换树脂IonicA-260处理含砷68毫克/升的砷酸盐废水,在pH值6.95时,去除率可达82~100%,中等碱性或强碱性树脂(IonicA-300,A-540,A-550)效果较差。

一般而言,弱碱性树脂宜在较低的pH环境下工作,而中性树脂宜在接近中性的条件下工作较好,而强碱性离子交换树脂则可在较宽广的pH条件下工作[107][108]。

用铝载的聚羟肟酸螯合树脂可以在pH3~6.5下对废水中的砷进行吸附,吸附过程符合Langmuir模式,最大吸附容量为2.1mmol/g树脂,常见的阴离子如氯根,硝酸及硫酸根不影响砷的吸附,但磷酸根有明显的影响,此法可以用来处理半导体工业及木材处理工业[109]。

载铁的亚氨基醋酸盐螯合树脂(载铁量为168mg/g树脂)用来处理含砷废水时,在pH1.7时砷的吸附量最大,砷的吸附量可达~60mgAs/g树脂[110]。

此外还可载有锆Zr(IV)-EDTA的螯合树脂进行进行交换吸附[111]。

砷可以用含巯基的大孔树脂来吸附去除,这种树脂可以从甲基丙烯酸-2,3-环硫丙基酯-二乙烯苯聚合而得。

它显示出对三价砷的良好吸附作用,所吸附的NaAs

可以用稀氢氧化钠溶液解吸,可以多次循环作用[112]。

1.4.萃取法

含三价和五价砷的硫酸废水,可以用等体积的疏水性萃取剂在50℃进行萃取分离,所用的萃取剂有Cyanex923,Cyanex925,Cyanex301及新癸酰异羟肟酸在甲苯中的溶液[113]。

也可以用含有细小吸附颗粒及铵盐的溶剂对含五价砷的废水进行处理,即使废水中的砷浓度很低,砷仍能很容易地被去除,可以用来处理电子元件蚀刻废水[114]。

另外还有报导用磷酸三丁酯作为萃取剂对砷的萃取[115]。

1.5.生物法

水葫芦(Eichhomiacrassipes(Mart)Solms)可以水中吸收砷对水质进行净化。

由于砷还有可能从水葫芦中渗沥出,所以当水体中有水葫芦存在时,对水体中的砷的环境评价要特别注意[116]。

Seopullariopsisbrevicaulis可使废水中的砷酸盐转化成胂及三甲胂,废水中的砷去除率可以达到93~99%,其产生的气体经加热热解回收高品质的砷,而Penicilliumchrysogenum可还原碲化合物成元素碲或二甲基碲,回收率可达89~98%的碲[117]。

废水除砷的效果还可以通过生化的方法来改进,如在生化池中加入金属铁,铁细菌如等量的Deptothrixochracea,D.crassa及jallionellaferruginea,硫酸盐还原菌及锯末等[118]。

含砷废水也可以用生化的方法,如利用Scopulariopsisbrevicaule霉菌在pH3.4时处理6天,可有99.5~97.5%的去除率,将废水中的砷离子转变成气态的三甲砷,将此含砷气体进行热分解,可以获得高纯度的砷[119]。

2.高浓度含砷废水处理方案比选

国内目前处理含高砷、氟及重金属废水的方法主要有硫化沉淀法、絮凝共沉淀法、中和沉淀法、铁氧体法等,应用较多的是前两种。

对含砷浓度极高的废水,采用硫化钠脱砷,再与厂内其他废水混合后一并中和处理(贵溪冶炼厂、金隆铜业有限公司等采用此法);

对含砷浓度较低的废水一般采用石灰—铁盐共沉淀法(葫芦岛锌厂、安徽金昌冶炼厂、铜陵第一冶炼厂等采用)。

下面就硫化沉淀法、絮凝共沉淀法、中和沉淀法、铁氧体法进行介绍。

2.1.硫化沉淀法

硫化沉淀法是去除废水中的砷和多种重金属的常用方法,它的处理机理是在废水中加入硫化剂与砷生成难溶的硫化物,沉降分离除去砷。

常用的硫化剂有硫化钠、硫氢化钠、硫化氢等。

对于砷含量较高的酸性废水,采用硫化法可去除废水中约99%以上的砷,形成以三硫化二砷为主要成分且含量较高的含砷废渣,有利于砷的回收利用。

但该方法不适用于污水中的微量砷的去除,只适用于对工业生产的高含量砷的污水进行初步除砷,要使工业污水达标排放,还要辅助使用混凝法等其它方法。

而且最好在酸性条件下进行,否则沉淀物难以过滤。

另外,硫化沉淀后的清液中尚有过剩的

排放前要除H2S。

硫化剂本身有毒、价贵,因而还限制了它在工业上的广泛应用。

2.2.絮凝共沉淀法

絮凝共沉法是目前处理含砷废水用得最多的方法。

借助加入(或者原有)的

等离子,并用碱(一般是氢氧化钙)调到适当的PH。

使其水解形成氢氧化物胶体,这些氢氧化物胶体能把

及其它杂质吸附在表面,在水中电解质的作用下,氢氧化物胶体相互碰撞凝聚,并将其表面吸附物(砷化物)包裹在凝聚体内,形成绒状凝胶下沉,达到除砷的目的。

常用的絮凝剂有铝盐(如硫酸铝、聚合硫酸铝等)和铁盐(如三氯化铁、硫酸铁、硫酸亚铁、聚合硫酸铁等)。

其中,铁盐混凝法是利用

在水溶液中易水解成Fe

的性质,进行混凝吸附五价砷的方法。

该方法一般采用搅拌,铁氧化等将三价砷氧化成五价砷,从而达到除砷目的。

林玉琴[33]等用

在pH=7的中性水中,将水解生成的Fe

与纸浆的复合沉淀物作为吸附剂处理饮用水,经实验室实验已取得成功。

适宜于降低地下水中的砷,使之达到饮用水卫生标准;

对Fe、Mn、As共存的地下水,降砷效果尤为显著。

2.3.中和沉淀法

中和沉淀法是一种应用较广的方法,其机理主要是往废水添加碱(

或NaOH),提高溶液pH值,这时砷生成钙或钠盐沉淀,由于砷的固有性质,这种方法泥渣沉淀缓慢,且很难将废水的砷净化到符合排放标准。

在酸性废水处理中主要的碱性中和剂有:

NaOH(烧碱)、

(熟石灰)、氨水、白云石、石灰石、电石渣等。

其中石灰应用最为普遍,它价廉易得,中和反应效果好。

工业上也常用石灰作为钙中和沉淀剂。

BOTHE和BROWN通过实验确定,在向含

的废水中投加石灰时,会形成

等。

朱义年等通过混合沉淀和溶解实验详细研究了pH值和Ca与As摩尔比对石灰沉淀法处理高含量含砷废水的影响。

由于石灰与砷化合物作用较慢,生成的偏亚砷酸钙

颗粒较小,所以反应不易完全,除砷效果较差。

用石灰作为沉淀剂的最大优点是处理成本低、工艺简单、对含砷较高的污水用此法可得到理想的处理效率,但在含砷废水处理过程中沉淀析出的砷酸钙稳定性较差,上世纪80年代的一些研究结果表明,砷酸钙与空气中的二氧化碳接触会分解成碳酸钙和砷酸,从而砷重新进人溶液中,造成二次污染。

NISHIMURA等通过实验发现,在高温下锻烧可以降低砷酸钙和亚砷酸钙的溶解度。

在锻烧过程中,无定形的砷酸钙和亚砷酸钙可以转变成晶体结构的砷酸钙,且锻烧温度越高,砷酸钙的溶解度越小。

2.4.铁氧体法

铁氧体法是日本电气公司(NEC)研究出来的一种从废水中除去重金属的工艺技术,是在含重金属离子废水中加入铁盐,利用共沉淀法从废水中制取通讯用的高级磁性材料超性铁氧体,化学结构式是Fe3O4。

形成理想铁氧体的条件是废水中

=

,当溶液中含有其他重金属离子时,这些重金属离子就取代晶格中的

位置,形成多种多样的铁氧体。

砷是具有金属和非金属性质的两性物质,同样可以用铁氧体法处理,该方法的操作过程是将硫酸亚铁按铁砷比为2.0~2.5加入到废水中,然后加碱调节pH值为8.5~9.0,反应温度为60~70℃,鼓风氧化20~30分钟后可生成咖啡色

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 建筑土木

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1