高考概率试题评析与复习文档格式.docx
《高考概率试题评析与复习文档格式.docx》由会员分享,可在线阅读,更多相关《高考概率试题评析与复习文档格式.docx(5页珍藏版)》请在冰豆网上搜索。
四、《课程标准》、《考试大纲》、《考试说明》三者的关系:
课程标准考试大纲考试说明《高考说明》是高考命题的依据,是高考复习教学的依据。
五、2019年《考试说明》中统计概率内容和要求2019年高考考试说明(课程标准实验版)数学(理)(六)统计1.随机抽样
(1)理解随机抽样的必要性和重要性.
(2)会用简单随机抽样方法从总体中抽取样本;
了解分层抽样和系统抽样方法.2.用样本估计总体
(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.
(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性
(1)会做两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.
(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).(七)概率1.事件与概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.
(2)了解两个互斥事件的概率加法公式.2.古典概型
(1)理解古典概型及其概率计算公式.
(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型
(1)了解随机数的意义,能运用模拟方法估计概率.
(2)了解几何概型的意义.(二十一)概率与统计
(1)理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列.
(2)了解超几何分布,并能进行简单的应用.(3)了解条件概率的概念,了解两个事件相互独立的概念,理解n次独立重复试验模型及二项分布,并能解决一些简单问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题.(5)借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.(6)了解回归分析的思想、方法及其简单应用.(7)了解独立性检验的思想、方法及其初步应用.2019年高考考试说明(课程标准实验版)数学(文)6.统计
(1)随机抽样①理解随机抽样的必要性和重要性.②会用简单随机抽样方法从总体中抽取样本;
了解分层抽样和系统抽样方法.
(2)用样本估计总体①了解分布的意义和作用,会列频率分布表,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.②理解样本数据标准差的意义和作用,会计算数据标准差③能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.(3)变量的相关性①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).7.概率
(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.②了解两个互斥事件的概率加法公式.
(2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率.②了解几何概型的意义.17.统计案例①通过典型案例了解回归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.②通过典型案例了解独立性检验的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.六、近五年(2009~2019)高考新课标卷中的统计概率试题六、近五年(2009~2019)高考新课标卷中的统计概率试题(2009年宁夏卷理18)某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。
(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
w.w.w.k.s.5.u.c.o.m(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.表1:
生产能力分组100,110110,120120,130130,140140,150人数48x53表2:
生产能力分组110,120120,130130,140140,150人数6y3618(i)先确定x,y,再在答题纸上完成下列频率分布直方图。
就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?
(不用计算,可通过观察直方图直接回答结论)w.w.w.k.s.5.u.c.o.m(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)w.w.w.k.s.5.u.c.o.m(2009年宁夏卷文19)某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(Ⅰ)A类工人中和B类工人各抽查多少工人?
(Ⅱ)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2表1:
生产能力分组110,120120,130130,140140,150人数6y3618(i)先确定,xy,再在答题纸上完成下列频率分布直方图。
(不用计算,可通过观察直方图直接回答结论)(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)。
(2010年全国新课标卷文、理19)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
是否需要志愿性别男女需要4030不需要160270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据
(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?
说明理由附:
(2019年全国新课标卷理19)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:
A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(I)分别估计用A配方,B配方生产的产品的优质品率;
(II)已知用B配方生产的一种产品利润y(单位:
元)与其质量指标值t的关系式为2,942,941024,102tytt从用B配方生产的产品中任取一件,其利润记为X(单位:
元).求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).(2019年全国新课标卷文19)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:
元)与其质量指标值t的关系式为2,942,941024,102tytt估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.(2019年全国新课标卷理18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:
元)关于当天需求量n(单位:
枝,n)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:
枝),整理得下表:
日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16枝玫瑰花,X表示当天的利润(单位:
元),求X的分布列、数学期望及方差;
②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?
请说明理由.(2019年全国新课标卷文18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:
日需求量n14151617181920频数10201616151310①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:
元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.(2019年全国新课标I卷理19)一批产品需要进行质量检验,检验方案是:
先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;
如果n=4.再从这批产品中任取1件作检验;
若为优质品,则这批产品通过检验;
其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:
元),求X的分布列及数学期望.(2019年全国新课标I卷文18)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:
h).试验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.61.22.71.52.81.82.22.33.23.52.52.61.22.71.52.93.03.12.32.4服用B药的20位患者日平均增加的睡眠时间:
3.21.71.90.80.92.41.22.61.31.41.60.51.80.62.11.12.51.22.70.5
(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?
(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
(2019新课标全国Ⅱ卷理19).经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示,经销商为下一个销售季度购进了130t该农产品,以X(单位:
t,100X150)表示下一个销售季度内的市场需求量,T(单位:
元)表示下一个销售季度内经销该农产品的利润.
(1)将T表示为X的函数;
(2)根据直方图估计利润T不少于57000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:
若需求量X[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望.(2019新课标全国Ⅱ卷文19).经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-9所示.经销商为下一个销售季度购进了130t该产品.以X(单位:
(2)根据直方图估计利润T不少于57000元的概率.