风力发电机组偏航控制系统设计Word文件下载.docx

上传人:b****6 文档编号:21523243 上传时间:2023-01-31 格式:DOCX 页数:43 大小:2MB
下载 相关 举报
风力发电机组偏航控制系统设计Word文件下载.docx_第1页
第1页 / 共43页
风力发电机组偏航控制系统设计Word文件下载.docx_第2页
第2页 / 共43页
风力发电机组偏航控制系统设计Word文件下载.docx_第3页
第3页 / 共43页
风力发电机组偏航控制系统设计Word文件下载.docx_第4页
第4页 / 共43页
风力发电机组偏航控制系统设计Word文件下载.docx_第5页
第5页 / 共43页
点击查看更多>>
下载资源
资源描述

风力发电机组偏航控制系统设计Word文件下载.docx

《风力发电机组偏航控制系统设计Word文件下载.docx》由会员分享,可在线阅读,更多相关《风力发电机组偏航控制系统设计Word文件下载.docx(43页珍藏版)》请在冰豆网上搜索。

风力发电机组偏航控制系统设计Word文件下载.docx

要求完成的内容1.查阅相关资料,掌握风机发电机组的基本结构;

2.查阅相关资料,了解风力发电机组的偏航系统硬件结构及功能;

3.查阅相关资料,掌握偏航控制系统的几种流程;

4.掌握一种高级编程语言(如visualbasic6.0);

5.编制对风偏航的控制程序;

6.完成毕业设计说明书一篇。

发题日期:

2013年1月9日完成日期:

指导教师签名

摘要

长能源、环境是当今人类生存和发展所要解决的紧迫问题。

风力发电作为一种可持续发展的新能源,不仅可以节约常规能源,而且减少环境污染,具有较好的经济效益和社会效益,越来越受到各国的重视。

由于风能具有能量密度低、随机性和不稳定性等特点,风力发电机组是复杂多变量非线性不确定系统,因此,控制技术是机组安全高效运行的关键。

偏航控制系统成为水平轴风力发电机组控制系统的重要组成部分。

风力发电机组的偏航控制系统,主要分为两大类:

被动迎风偏航系统和主动迎风系统。

前者多用于小型的独立风力发电系统,由尾舵控制,风向改变时,被动对风。

后者则多用大型并网型风力发电系统,由位于下风向的风向标发出的信号进行主动对风控制。

本文设计是大型风力发电机组根据风速仪、风向标等传感器数据,对风、制动、开闸并确定起动,达到同步转速一段时间后,进行并网操作,开始发电。

关键词:

风力发电机;

风向标;

偏航控制系统

ABSTRACT

Energy,theenvironmentisthedevelopmentofhumansurvivalandtheurgencyoftheproblemtobesolved.Windpowerasanewsourceofenergyforsustainabledevelopment,notonlycansaveconventionalenergysources,andreducingenvironmentalpollution,goodeconomicandsocialbenefits,ever-increasingimportanceattached.

Asthewindwithalowenergydensity,randomandnon-stabilitycharacteristicsofwindturbineiscomplexandever-changingamountofnonlinearuncertainsystems,therefore,thecontrolunittechnologyisthekeytosafeandefficientoperation.Yawcontrolsystemasahorizontalaxiswindturbinecontrolsystemforanimportantpartof.Thewindturbineyawcontrolsystemisdividedintotwocategories:

passiveandactiveyawwindwindsystems.Inthispaper,thedesignisbasedonlarge-scalewindturbineanemometer,windvane,suchassensordata,onthewind,braking,anddeterminethestartinggateopeningtosynchronousspeedforsometime,andnetworkoperationstobeginpowergeneration.

Keywords:

Windturbine;

Windvane;

Yawcontrolsystem

1绪论

1.1课题的背景和意义

随着人类社会发展的历史与能源的开发和利用水平密切相关,每一次新型能源的开发都使人类经济的发展产生一次飞跃。

在我们进入21世纪的今天,世界能源结构也正在孕育着重大的转变,即由矿物能源系统向以可再生能源为基础的可持续能源系统转变。

所谓可再生能源就是取之不尽、用之不竭、与人类共存的能源。

它包括太阳能、风能、生物质能、地热能、海洋能等。

在这众多的可再生能源中,目前发展最快、商业化最广泛、经济上最适用的,当数风力发电。

风能是一种干净的可再生能源。

太阳辐射对地球表面的不均匀性加热是风的主要成因。

空气从高气压区向低气压区流动就产生了风。

地球自转、公转的影响和地形、地貌的差异,加剧了空气流量和流向的变化,造成风速和风向的变化。

地球上大约有2%的太阳能被转化成风能。

风力发电作为一种新的、安全可靠的洁净能源,其优越性为越来越多的人所认识。

风力发电的优越性可归纳为五点:

(1)风力发电是一种洁净的自然能源。

风能在转换成电能的过程中,只降低了气流的速度,没有给大气造成任何污染。

风电没有常规能源及核电对环境造成的污染问题。

核电的放射性废料仍是一个较难解决的问题。

(2)风力发电技术不断进步,单机容量逐步增大,产品质量得到改善,可用率达到98%以上,是一种安全可靠的能源。

(3)由于技术进步和产品批量增加,风力发电的经济性日益提高,风电成本持续下降,风力发电的成本己接近煤电,低于油电和核电。

若考虑煤电的环境污染和交通安全等问题,风电的经济性优于煤电。

(4)风力发电场建设周期短。

单台风力发电机组安装仅需几个星期,可多台同时安装,互不干扰。

建设一个风力发电场,从土建、安装到投产,只需半年至一年时间;

而煤电、核电的建设需要二至十年。

(5)风力发电占地面积少。

塔筒与监控、变电建筑仅占风电场约1%的土地,其余99%的场地可供农、林、牧使用。

由此可见,风力发电具有较好的经济效益和社会效益,风力发电技术的发展受到世界各国政府的高度重视。

自从20世纪80年代现代并网风力发电机组问世以来,随着桨叶空气动力学、计算机技术、控制技术、发电机技术和新材料的发展,风力发电技术的发展极为迅速,单机容量从最初的数十千瓦级发展到最近进入风电场的兆瓦级机组;

功率控制方式从定桨距失速控制向全桨叶变距和变速控制发展;

运行可靠性从20世纪80年代初的50%提高到98%以上;

并且在风电场运行的风力发电机组全部可以实现集中控制和远程控制;

风电场发展空间更加广阔,已从内陆移到海上。

风电的迅猛发展已经形成了规模巨大的产业,因此它还可带动一批相关产业和产品的发展,对促进国民经济的发展具有重要的意义。

1.2世界风力发电的发电

根据全国风能理事会(GWEC)发布的全球风电市场装机数据,2011年,全球新增风电装机达到237669MW。

这一数据表明全球累计装机实现了21%的年增长,新装数据达到6%。

到目前为止,全球75个过国家有商业运营的风电装机,其中22个国家的装机容量超过1000MW。

1996~2011年全球风电发展情况如图1-1和图1-2。

图1-11996~2011年全球风电每年新增装机容量

图1-21996~2011年全球风电每年累计装机容量

1.3国内风力发电的发展

风电行业在2011年仍然保持了较快的发展,根据不完全统计,截止到2011年12月末,中国风电累计装机容量达6580.21万千瓦(包括已经并网发电和等待并网发电),分布在31个省、直辖市、自治区和特别行政区。

其中,广州和四川在2011年填补了无风电的空白。

累计风电装机超过200万千瓦的省级地区有10个,其中内蒙古风电装机容量以1853.63万千瓦位居第一,河北与甘肃分别位居第二和第三。

累计风电装机容量前10位省级地区的合计装机容量达到5671.45万千瓦,占全国累计风电装机容量的86.19%如图1-3。

图1-32011年底中国升级地区累计风电装机容量前十位

“十二五”期间将是中国风电发展的重要时期,中国风电在此期间将会取得重要的发展,中国政府还将出台一些促进风电发展的政策,促进风电健康、可持续发展。

如果国家政府没有出现重大调整,根据市场发展预测,到2015年末中国风电累计装机容量将超过1.3亿千瓦,年平均增长将达到1800万千瓦。

1.4本课题主要任务

偏航系统是风力发电机组特有的,它主要有两个功能:

一是使风轮跟踪变化稳定的风向;

二是当风力发电机组由于偏航作用,机舱内引线的电缆发生缠绕时,自动解缆。

本课题是在了解风力发电机组基本组成和功能的前提下,进一步的理解风力发电机偏航控制系统的一些基本机构和功能,了解简单的偏航控制流程,并利用visualbasic6.0完成编制风机偏航控制的简易程序。

2风力发电机组系统构成及功能简介概述

2.1风力发电机的分类

目前投入商业运行的并网风力发电机组可分为定桨定速型和变桨变速型两大类,主要采用笼式异步发电机、双馈异步发电机和永磁同步发电机三种发电机。

如图2-1风机分类。

图2-1风机分类

2.2现代风机

现代风机为了解决风力发电机发出的电时有时无,电压和频率不稳定的问题,增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等,现代风机的示意如图2-2。

图2-2现代风力发电机的系统构成

2.3风力发电机系统组成部分简介

目前研究最多的也是双馈感应风力机系统,与传统的恒速恒频风力发电系统相比,采用双馈电机的变速恒频风力发电系统具有风能利用系数高,能吸收由风速突变所产生的能量波动以避免主轴及传动机构承受过大的扭矩和应力,以及可以改善系统的功率因数等但无论哪种结构形式,风力发电机系统基本包括以下几个组成部分:

风力机桨叶系统,齿轮箱系统,发电机系统,控制系统,偏航系统,刹车系统等。

图2-3风力发电机组结构总图

风力机桨叶系统

风轮是吸收风能并将其转换成机械能的部件,风以一定的速度和攻角作用在桨叶上,使桨叶产生旋转力矩而转动,将风能转变为机械能,进而通过增速器驱动发电机。

对于定桨距系统,其桨叶与轮毂的连接是固定的,即当风速变化时,桨叶的迎风角度不能随之改变。

这一特点,给定桨距风力发电机组提出了两个必须要解决的问题,一是当风速高于风轮额定风速时,桨叶必须能够自动地将功率限制在额定值附近,因为风力机上所有材料的物理性能是有限度的。

称桨叶的这一特性为自动失速性能。

二是运行中的风力发电机组在突然失去电网的情况下,桨叶自身必须具备制动能力,使风力发电机组能够在大风情况下安全停机。

为解决这样的问题,制造商家通过改善叶轮的制造材料,采用加强玻璃塑料、碳纤维强化塑料、钢和铝合成。

另外在桨叶尖部安装叶尖扰流器,在需要制动时打开。

由于叶尖部分处于距离轴的最远点,整个叶片作为一个长的杠杆,扰流器产生的气动阻力相当高,足以使风力机在几乎没有任何磨损的情况下迅速减速,这一过程即是桨叶空气动力刹车。

对于变桨距系统,叶片用可转动的轴安装在轮毂上,轮毂上安装的几个叶片可同步转动以改变叶片的安装角,即同步改变叶片的迎角以满足不同的风速条件下风力发电机得到最大功率。

随着风力机单机容量的不断增加,风力机发电效率和可靠性的不断改善,大中型风力机的叶片材料逐渐由玻璃纤维增强树脂发展为强度高、质量轻的碳纤维。

风力机齿轮箱系统

由于风轮转速与发电机转速之间的巨大差距,增速齿轮箱成为风力发电机组中的一个必不可少的部件。

增速箱的低速轴接桨叶,高速轴联接发电机(直驱式风力发电机则没有齿轮箱机构)。

齿轮箱系统的特点是:

(1)低速轴采用行星架浮动,高速轴采用斜齿轮(螺旋齿轮)浮动,这种两级或者三级的复合齿轮形式,使结构简化而紧凑,同时均载效果好。

(2)输入轴的强度高、刚性大、加大支承,可承受大的径向力、轴向力和传递大的转矩,以适应风力发电的要求。

在大型风力发电机中,发电机的极数愈多,增速箱的传动比就可以越小。

国外一般采用2-4极的发电机。

风力发电机组的设计通常要求在无人值班运行条件下工作长达20年之久,因此齿轮箱的轴承在此受到了真正的考验。

近年来国内外风力发电机组故障率最高的部件当数齿轮箱,而齿轮箱的故障绝大多数是由于轴承的故障造成。

在齿轮箱的使用中,应根据使用地点的不同添加润滑油冷却或加温机构,以确保齿轮箱的润滑,增加其使用寿命。

与传统的风力发电机系统相比,直驱永磁风力发电机取消了沉重的增速齿轮箱,提高了风力发电机组的可靠性和可利用率,降低了制造和维护成本,减小了机械效率损失,提高了运行效率。

开发直驱式风力发电机组是我国日后风力发电机制造的趋势之一。

发电机系统

现今,风力发电机的单机容量越来越大。

风力发电机所用的发电机一般采用异步发电机,对于定桨距风力发电机组,一般还采用单绕组双速异步发电机,这一方案不仅解决了低功率时发电机的效率问题,而且还改善了低风速时的叶尖速比。

由于绕线式异步发电机有滑环电刷,这种摩擦接触式结构在风力发电恶劣的运行环境中较易出现故障。

所以,有些风力发电系统采用无刷双反馈电机,该电机定子有两套极数不同的绕组,转子为笼型结构,无须滑环与电刷,可靠性高。

目前,这种发电机形式成为各风电制造厂商生产的主流形式。

但对于直驱式风力发电机系统,采用的是永磁同步发电机形式。

这种直接驱动式风力发电机组由于没有齿轮箱,零部件数量相对传统风电机组要少得多。

直驱式风力发电机组在我国是一种新型的产品,但在国外已经发展了很长时间。

目前我国在直驱式风机中系统的研究相对传统机型较少,但开发直驱式风力发电机组也是我国日后风机制造的趋势之一。

图2-4所示为双馈异步感应发电机系统,通过轴承与齿轮箱机构联结。

图2-4双馈异步感应发电机系统结构图

偏航系统

偏航系统是用来调整风力机的风轮叶片旋转平面与空气流动方向相对位置的机构,因为当风轮叶片旋转平面与气流方向垂直时,风力机从流动的空气中获取的能量最大,因而风力机的输出功率最大。

解缆装置

自然界中的风是一种不稳定的资源,它的速度与风向是不定的。

由于风向的不确定性,风力发电机就需要经常偏航对风,而且偏航的方向也是不确定的,由此引起的后果是电缆会随风力发电机的转动而扭转。

如果风力发电机多次向同一方向转动,就会造成电缆缠绕,绞死,甚至绞断,因此必须设法解缆。

不同的风力发电机需要解缆时的缠绕圈数都有其规定。

当达到其规定的解缆圈数时,系统应自动解缆,此时启动偏航电机向相反方向转动缠绕圈数解缆,将机舱返回电缆无缠绕位置。

若因故障,自动解缆未起作用,风力发电机也规定了一个极值圈数,在纽缆达到极值圈数左右时,纽缆开关动作,报纽缆故障,停机等待人工解缆。

在自动解缆过程中,必须屏蔽自动偏航动作。

自动解缆包括计算机控制的凸轮自动解缆和纽缆开关控制的安全链动作计算机报警两部分,以保证风电机组安全。

凸轮控制的自动解缆过程如下:

根据角度传感器所记录的偏转角度情况,确定顺时针解缆还是逆时针解缆。

首先松偏航闸,封锁传感器故障的报告,当需要解缆且记录数字为负时,控制偏转电机正转,当需要解缆且记录数字为正时,控制偏转电机反转。

在此过程中同时检测偏航中心电机工作,系统处于待机状态,向中心控制器发出自动解缆完成信号。

纽缆开关控制的安全链保护;

若凸轮控制的自动解缆未能执行,则纽缆情况可能会更加严重,当纽缆达到极值圈数时,纽缆开关将动作,此开关动作将会触发安全链动作,向中心控制器发出紧急停机信号和不可自复故障信号,等待进行人工解缆操作。

刹车系统

其功能是当风力机需要停止运转或在大风时使风力机停止运转以达到维修或保护风力机的目的。

在小型风力机中多采用机械抱闸刹车方式实现制动停车,可以手动也可自动实现停车;

在大中型风力机中多采用液压或电气制动方式实现抱闸停车。

塔架

用来支撑风力机及机舱内各种设备,并使之离开地面一定高度,以使风力机能处于良好的风况环境下运转。

根据风力机容量的大小,塔架可以制成实心铁柱式,也可以制成钢材晰架结构或柔性塔架。

控制系统

风力发电机组控制系统的结构图如图2.9所示。

定桨距风力机控制系统由于功率输出是由桨叶自身的性能来限制的,桨叶的节距角在安装时已经固定;

发电机的转速则是由电网频率限制。

所以,在允许的风速范围内,该形式的控制系统在运行过程中对由于风速的变化引起输出量的变化是不作任何控制的。

变桨矩风力发电机组,则在控制性能方面,大大改善,不但在起动时可对转速进行控制,在并网后则可对功率进行控制。

相对于定桨距风力发电机组来说,变桨距风力发电机组的液压系统也不再是简单的执行机构,作为变距系统,它自身是一个闭环控制系统,采用了电液比例阀或电液伺服阀,控制系统水平得到了极大的改善和提高,并逐渐发展成熟。

图2-5所示为风力发电机控制系统的结构,针对此控制系统,选用集散型或分布式工业控制计算机,是绝大多数风力发电机组选用的形式。

其优点是有各种功能的专用模块可供选择,可以方便地实现就地控制,许多控制模块可直接布置在控制对象的工作点,就地采焦信号讲行处理。

这样就避免了各类传感器和舱内执行机构与地面主控制器之间的通信线路及控制线路。

主控制器通过各类安装在现场的模块,对电网风况及风力发电机组的运行参数进行监控,并与其它控制模块保持通信,通过对各方面的情况进行综合分析后,发出控制指令,实现控制目的。

图2-5控制系统结构图

3偏航控制系统组成和原理

3.1偏航系统的组成

风力机的偏航系统由偏航控制机构和偏航驱动机构两大部分组成,其中偏航控制机构包括:

(1)风向传感器

(2)偏航控制器

(3)解缆传感器

机械驱动机构包括:

(1)偏航轴承

(2)偏航驱动装置

(3)偏航制动器

偏航控制机构是风力机特有的伺服系统,机械驱动机构则是偏航系统的执行机构。

3.2偏航控制机构

偏航控制机构是风力机特有的伺服系统,用于控制风论跟踪变化稳定的风向,并且具有当电缆发生缠绕时,能够自动解除缠绕功能。

风向传感器

风向传感器相关的原理和性能参数参见第三章。

需要说明的是风力机上安装的风向、风速计与气象和气候分析所用的测风设备不同有一些区别。

具体有以下两个方面:

(1)因为只用于控制偏航系统的工作,并不用于风向、风速的精确计量,因此通常精度较低。

(2)风向仪安装在机舱顶部随机舱一起转动,因此只能测量出机舱与来风方向的大致角度,以判断从哪个方向偏航对风,并不能检测出风的实际方向。

因此风力机上所使用的风向仪和测风装置上的风向仪在结构和原理上有很大区别。

主要使用的风向仪的结构与原理如图3-1所示。

风向传感器安装在风力发电机组的玻璃钢机舱罩上的固定支架土,可随风力发电机组同步旋转。

两个光敏传感器安装在风向标里,OPT为0度角传感器,OPT2为90度角传感器。

图3-1风向传感器原理图

当风力发电机与风向其工作原理是:

一个半圆形桶罩有风向标驱动,当传感器OPT1或OPT2没有被半圆筒罩挡住时,传感器输出信号是高电平,反之是低电平。

以下就几种情况加以讨论:

(1)风力发电机对准风向

当风力发电机对准风向时,OPT1完全或部分(因此时不一定对风很准,且风向不时变化)被遮住,输出0~24V(具体看对风的准确度)的电信号。

OPT2完全没有被遮住,输出24V稳定高电平信号。

(2)风力发电机与风向成顺时针90成顺时针90°

时,OPT2完全或部分被遮住,输出0~24V电信号。

OPT1完全没有被遮住,输出24V稳定高电平信号。

(3)风力发电机与风向成180°

当风力发电机与风向成180°

时,OPT1完全或部分被遮住,输出0~24V电信号,OPT2完全被遮住,输出0V稳定低电平信号。

(4)风力发电机与风向成逆时针90°

当风力发电机与风向成逆时针90°

时,OPT1完全被遮住,输出OV低电平。

OPT2完全或部分被遮住,输出0~24V电信号。

由于风一直是波动的,方向是不定的,因此风向标在风中不停摇摆,这样造成OPT1或OPT2有时的输出不是稳定的0V或24V的电平信号,而是0~24V之间的一个不确定值。

这样造成的的后果是:

由于不是对风很正,偏航系统就会不停的工作,机舱将会频繁的调向。

可以看出,采用这样的光敏传感器,其精度不高,指示也不明确,同时也不能记录每次的偏航角度为解缆作参考。

针对这样的缺陷,文献中采用了具有很高的精确性、分辨率与可靠性的绝对式角位移传感器作为风向传感器。

但如果存在大风强风雷电等恶劣天气时候,这样的角位移传感器极易损坏。

偏航控制器

偏航控制器负责接受和处理信号,根据控制要求,发送控制命令。

通常采用单片机等微处理器作为偏航控制器,随着数字处理信号技术的发展,采用嵌入式微处理器或者DSP等作为控制器成为研究应用的趋势。

解缆传感器

由于风力机总是选择最短距离最短时间内偏航对风,有时由于风向的变化规律,风力机有可能长时间往一个方向偏航对风,这样就会造成电缆的缠绕,如果缠绕圈过多,超过了规定的值,将造成电缆的损坏。

为了防止这种现象的发生,通常安装有解缆传感器。

解缆传感器安装在机舱底部,通过一个尼龙齿轮与偏航大齿圈啮合,这样在偏航过程中,尼龙齿轮也一起转动。

通过蜗轮、蜗杆和齿轮传动多级减速,驱动一组凸轮,每个凸轮推动一个微动开关工作,发出不同的信号指令。

微处理器通过各个微动开关的信号来判断是否需要解缆,向哪个方向解缆以及何时停止解缆等。

有的风力机的解缆传感器中设置了有条件解缆和无条件解缆两种解缆信号,目的是保证电缆在扭转圈数较少的情况下,在无功率输出或停机的情况下就进行解缆,以减少解缆时的停机次数和功率损失。

3.3偏航驱动机构

偏航系统一般由偏航轴承、偏航驱动装置、偏航制动器、偏航计数器、纽缆保护装置、偏航液压回路等几个部分组成。

偏航系统的一般组成结构,如图3-2所示。

风力发电机组的偏航系统一般有外齿形式和内齿形式两种。

偏航驱动装置可以采用电动机驱动或液压马达驱动,制动器可以是常闭式或常开式。

常开式制动器一般是指有液压力或电磁力拖动时,制动器处于锁紧状态的制动器;

常闭式制动器一般是指有液压力或电磁力拖动时,制动器处于松开状态的制动器。

采用常开式制动器时,偏航系统必须具有偏航定位锁紧装置或防逆传动装置。

图3-2偏航驱动机构示意图

偏航轴承

常用的偏航轴承有滑动轴承和回转支承两种类型。

滑动轴承常用工程塑料做轴瓦,这种材料即使在缺少润滑的情况下也能正常工作。

轴瓦分为轴向上推力瓦、径向推力瓦和轴向下推力瓦三种类型,分别用来承受机舱和叶片重量产生的平行于塔筒方向的轴向力,叶片传递给机舱的垂直于塔筒方向的径向力和机舱的倾覆力矩。

从而将机舱受到的各种力和力矩通过这三种轴瓦传递到塔架(Nordtank和Vestas机组均采用这种偏航轴承)。

回转支承是一种特殊结构的大型轴承,它除了能够承受径向力、轴向力外,还能承受倾覆力矩。

这种轴承已成为标准件大批量生产。

回转支承通常有带内齿轮或外齿轮的结构类型,用于偏航驱动。

目前使用的大多数风力机都采用这种偏航轴承。

偏航轴承的轴承内外圈分别

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1