盾构施工临水临电方案设计Word格式.docx

上传人:b****5 文档编号:21454780 上传时间:2023-01-30 格式:DOCX 页数:25 大小:60.20KB
下载 相关 举报
盾构施工临水临电方案设计Word格式.docx_第1页
第1页 / 共25页
盾构施工临水临电方案设计Word格式.docx_第2页
第2页 / 共25页
盾构施工临水临电方案设计Word格式.docx_第3页
第3页 / 共25页
盾构施工临水临电方案设计Word格式.docx_第4页
第4页 / 共25页
盾构施工临水临电方案设计Word格式.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

盾构施工临水临电方案设计Word格式.docx

《盾构施工临水临电方案设计Word格式.docx》由会员分享,可在线阅读,更多相关《盾构施工临水临电方案设计Word格式.docx(25页珍藏版)》请在冰豆网上搜索。

盾构施工临水临电方案设计Word格式.docx

按Ⅱ类环境

在B类条件下

对钢筋混凝土结构中钢筋

SO42-

Mg2+

OH-

总矿

化度

pH值

侵蚀性CO2

HCO3-

结论

对混凝土结构腐蚀等级为

M18-CB-48-SH-1

钻孔水

HCO3-——Ca2+.Na+型

/

此外,灌口组泥岩含石膏、钙芒硝,岩石可能有SO42-腐蚀,施工阶段应加强水质化验,查明地下水对砼、钢筋、钢结构的腐蚀性。

3)土的腐蚀性

据代表性地基土的腐蚀性试验结果,区地基土对混凝土结构微腐蚀性,对钢筋混凝土结构中的钢筋微腐蚀性,对钢结构微腐蚀性。

施工中仍应加强地基土取样分析、复查其腐蚀性工作。

土的腐蚀性评价列下表:

土的腐蚀性评价表

评价指标

评价项目

指标试验值或计算值

标准值

有无

腐蚀性

腐蚀

等级

土对混凝土结构的腐蚀性评价

(SO42-)硫酸盐含量(mg/kg):

68.69-206.87

750-2250

(Mg2+)镁盐含量(mg/kg):

3.04-6.08

3000-4500

PH值:

7.4-7.8

5.0-6.5

土对钢筋混凝土结构中钢筋的腐蚀性评价

(Cl-)含量(mg/kg):

38.44-73.39

250-500

土对钢结构的腐蚀性评价

5.5-4.5

5.岩土层的富水性及渗透系数

本工程围地层在垂直剖面上,自上而下为人工填土,粉质黏土,砂层,卵石层,基岩全、强、中、微风化。

主要岩土层的渗透性参数参照《城市轨道交通岩土工程勘察规》(GB50307-2012)条文10.3.5表7、《工程地质手册》(第四版)、室试验成果后,综合确定水文参数。

区间主要岩土层特性及水文地质参数详见下表:

岩土层的工程特征及水文特征统计表

层号

名称

工程特征

水文特征

渗透系数(m/d)

试验值

经验值

建议值

<

2-2>

黏土

褐黄色,褐色,可塑~硬塑状。

水量小,富水差,透水能力微。

0.001~0.50

0.001

2-3>

粉质黏土

褐黄色,可塑~硬塑状,局部含少量粉粒

水量小,富水差,透水能力弱。

2-4>

粉土

灰黄色,稍密,局部夹粉、细砂。

0.50~1.0

0.5

2-5>

粉细砂

灰、灰褐色,潮湿~饱和,松散,局部含黏粒

水量一般,富水性中等,透水能力中等。

0.5~5.0

5.0

3-4>

灰、灰褐色,潮湿~饱和,松散,局部夹薄层中砂。

3-5>

中砂

灰黄色、灰色,饱和,中密。

水量一般,富水性中等,透水能力强。

5.0~10.0

6.0

3-8>

卵石土

灰黄~黄褐色,密实,潮湿~饱和。

10.0~100.0

20

5-1>

泥岩

紫红色,岩质较硬,含少量砂质,风化裂隙较发育,裂隙面充填灰绿色黏土矿物,锤击声半哑~较脆。

岩芯多呈短柱状,少量长柱状。

0.027~2.01

0.44

5-2>

砂岩

紫红色,细粒结构,薄-中厚层状,

少量呈饼状、块状,岩质较硬,敲击声脆

0.47

6.抗浮水位的确定

本区间结构部分位于饱水的卵石含水层中,在设计、施工及使用中,必须重视地下水的水压力及浮托作用的影响。

根据地下水位的高度进行区间结构抗浮验算,不满足抗浮要求时须采取抗浮措施(如抗拔桩、抗浮锚杆等)。

根据地铁1号线火车南站资料结合钻探以及省地矿厅环境地质监测总站对市地下水动态长期观测资料,在天然生态状况下,丰水期地下水位正常埋深约为3m,历史最高水位埋深约为2.0m;

地下水位年变幅约为1~2.5m。

建议抗浮水位埋深采用2m,标高采用479.11~481.28m。

 

三、编制依据

1、《电力工程电缆设计规》GB50217-94

2、《岩土工程勘察规》(GB50021-2001)(2009年版)

3、《建筑电气规》GB50055

4、《施工现场临时用电安全技术规》(JGJ46-2005)

5、《电线电缆及其附件实用手册》

6、《建筑施工手册》

7、《电线电缆及其附件实用手册》

8、《建筑工程施工现场供用电安全规》(GB50194-93);

9、《低压配电设计规》(GB50054-95);

10、《供配电系统设计规》(GB50052-95);

11、《通用用电设备配电设计规》(GB50055-93);

四、施工用水总体说明

建筑工地水源的选择,车站四周设有降水井,井中地下水满足施工要求,故此处水源为降水井的地下水和市政供水。

进行施工现场水管网的铺设时,铺设原则是在保证不间断供水的情况下,管道铺设越短越好,同时还考虑到在施工期间各段管网具有移动的可能性。

本工程铺设类型采用树枝状和环形管网相结合铺设。

现场只考虑施工临时用水、生活用水。

不考虑水头损失的计算,因水头损失的计算目的在于确定水泵的扬程。

为确保施工用水,必须预先做好水资源调查,了解施工现场周围自来水管道的布置、走向、管径、埋设深度及自来水压力等情况。

1.循环水系统

盾构机始发时使用降水井供水和市政供水管供水,引自底板循环水池,作为盾构机循环用水和施工用水的水源。

循环水池的水经多级泵输送到循环水管,从多级泵出口铺设水管引到隧道的进水管,进水管通过盾构机的循环水系统,提供冷却、台车用水、土仓加水等一切隧道的施工用水,循环水通过隧道铺设的回水管送到冷却塔冷却,冷却完的水进入循环水池继续水系统的循环。

循环水系统中必须保证水压和供水量,这对施工也是一个重要的因素。

2.污水系统

为确保盾构施工的顺利进行,隧道的污水必须及时有效地抽出洞外。

在盾构机尾处用气动隔膜泵可以把水抽到台车上的污水箱里,污水箱里的水再通过水泵抽出洞外,其中在隧道掘至最低点时,还要在最低点处安一台污水泵,把最低点的积水及时抽出洞外,在洞外用污水池来沉淀污水,污水池位于底板,左右盾构井之间位置,沉淀的污水用潜水泵抽到地面处理。

这就是大概的污水系统,污水在隧道施工中也是一个很重要的部分。

3.地面施工用水

盾构机始发掘进后,地面场地需用水的地方包括:

制浆站、管片堆场、机修房、洗车槽、生活办公,水源同样是由降水井与市政水管共同提供。

施工总体用水示意图及施工用水系统图如下所示:

图3.1总体用水示意图

图3.2施工用水系统图

五、用水量的确定

循环水池位于中板,在车站配线段靠近始发端头处,用钢板焊接成水箱,长9米、宽4.5米、高2米,左右线各布置1个,总容积为162m3。

单条区间总长约4500m,,在这个区间围两条线共需DN100mm*6m的循环水管约1500根,每根水管蓄水量为0.0471m3,总蓄水量为35.3m3,两条线是70.6m3。

每环掘进用水量:

冲洗管片、冲洗盾尾、冲洗台车、二次注浆、注浆洗泵用水,以及其他临时突发用水等,掘进一环大概用水量为1.8m3,两条线每天按总共30环掘进量计算,总工需用水54m3,故循环水池蓄水够用。

但是当水池蓄水量到1/3时需及时加水补充,以免影响正常掘进。

地面现场用水需求最大的为制浆站,每环注浆10-12m3,每立方浆液含水50%,即5~6m3,取最大值为6m3,则两条线每天大概需180m3。

其他用水按50m3估算,则每天所需总水量约为284m3。

六、用水保证措施

1、现场供水必须要保证循环水池里的水量,保证水池里水的清洁,否则将

影响水系统的循环,从而影响施工进度。

2、供水管道安装时的焊接由专业焊工进行,对多级泵、冷却塔要加强巡回

检查监护,出故障及时处理,确保施工生产用水的畅通。

3、为确保施工方便和安全,在管网中每隔25~30米装设一个阀门,并在每

次接管时必须保证水管的畅通,接管前用水冲洗水管。

4、工人进行开源节流教育。

5、在接水管时密封圈和螺栓必须按要求连接,如果发现漏水的情况及时解

决。

6、当降水井提供的地下水水量不足时,及时打开市政水管阀门补充,以保

证循环水池里的水量充足。

七、现场临电勘探

现场由业主提供地铁盾构工程施工点临时施工用电,其中包括提供2×

5500KVA电源及地面2×

1000KVA箱式变压器,提供给后配套及现场施工用电,并且与柴油发电机相连,停电时保障隧道通风和照明。

盾构机设备动力为AC600V/380V,控制电压有AC230V,AC24V,DC24V,DC10V由盾构机配套2000KVA+2500KVA变压器和设备配套变压器提供。

八、确定各类线路走向

由业主提供的高压电源进入现场经开关柜引出四条回路,采用TN—C—S系统供电,通盾构机两条,第三、四条通过变压器(2×

1000KVA、10KV/0.4KV)供给连续皮带机、现场设备及办公使用。

施工现场共设4个一级配电箱:

箱变1引出一级箱1、3;

箱变2引出一级箱2、4;

主要保证为常用负荷供电,每台设备都配置三级开关柜。

由于施工用电需要临时用电,必要时可以从一级箱引出二级或三级临时配电箱。

九、负荷计算

盾构机施工供电包括盾构机供电、后配套设备供电和办公及生活用电三部分。

1、单台盾构机掘进时的用电设备有功计算负荷(Pjs1)

Pjs1=4300KW

2、单台盾构机掘进时的用电设备视在计算负荷(Sjs1)

Sjs1=Pjs1/COSΦ取功率因数COSΦ=0.85

Sjs1=Pjs1/0.85=4300/0.85=5058.82KVA

3、盾构施工用电设备

主要用电设备表

序号

设备名称

规格

型号

功率(kw)

数量

总功率(kw)

Kx

COSΦ

TanΦ

1

皮带机

4km

630

2

1260

0.8

0.8

0.75

45T龙门吊

45T

220

440

0.7

0.75

0.88

3

轴流风机

三级

110

4

循环水泵

多级

75

150

5

冷却塔

11

22

6

制浆站

1m³

50

7

储浆罐

12m³

21

42

8

井口搅拌电机

11m³

18.5

37

0.6

9

井口抽水泵

7.5

30

10

防洪水泵

15

隧道照明

60

12

检修车间

100

0.3

1.02

13

办公用电

40

14

备用电源

合计

2541

十、低压配电负荷计算及配电导线的选择

选择导线截面有以下三种方式,由于盾构机及后配套设备负荷量较大,其主要矛盾在导线的容许电流方面,所以本设计按允许电流选择方式选择配电导线的截面。

1、按机械强度的选择:

导线必须保证不致因一般机械损伤折断,根据GB50217-94移动式电气设备,龙门吊需经常弯移或有较高柔软性要求回路的电缆,应采用橡皮外护层。

2、按允许电流选择:

导线必须能承受负载电流长时间通过所引起的温升。

三相五线制线路上的电流按下式计算

I线=(K*P)/(1.732U线cosφ)

二相制线路上的电流按下式计算

I线=P/(U线cosφ)

式中I线-电流值(A)

K-需要系数

P-总容量

U线-电压

cosφ-功率因数

3、按允许电压降选择:

导线上引起的电压降必须在一定限度。

配电导线截面可用下式计算:

S=(∑P*L/C*ε)%

式中S-导线截面

ε—允许的相对电压降;

照明允许电压降为2.5%~5%,电动机电压不超过+5%

C—系数视导线材料而定,线路电压配电方式而定,铜线线路额定电压380V/220V,配电五线,C=77

4、至盾构机导线选择

盾构机导线截面选择因用电距离为4公里、10KV高压送电,所以按允许通过电流选择

I盾=(1.0P)/(1.732U线*COSф)

I盾=(1.0×

4300)÷

(1.732×

10×

0.85)=292.08A

查表选至盾构机高压电源电缆为YJV-10KV-3×

120+3×

50mm2。

5、至皮带机导线选择

单台皮带机运行时的用电设备视在计算负荷(Sjs2)

Sjs2=Pjs2/COSΦ取功率因数COSΦ=0.8

Sjs2=Pjs2/0.8=630/0.8=787.5KVA

由于负荷量较大,其主要矛盾在导线的容许电流方面,所以按导线的持续容许电流选择

I皮=(K×

P)/(1.732U线×

cosφ)

I皮=(0.8×

315)/(1.732×

0.38×

0.8)=478.61A

查表得从箱变至配电柜的电缆为2根YJV-3×

95+2×

备注:

每台套皮带机配置2个315kw的电机,2台电机分开接电,上式计算的为1台电机的电流。

6、配电箱一

配电箱三主要供电设备:

45T龙门吊、制浆站、备用电源;

Pjs=K∑(Kd1Pe1+…KdnPen)

Qjs=K∑(Kd1tanфPe1+…KdntanфPen)

Sjs=√Pjs²

+Qjs²

Ijs=Sjs/√3*U

K∑d=Pjs/Sjs

Pjs——计算有功功率

Qjs——计算无功功率

Sjs——计算视在功率

Kd——需用系数查《通用用电设备配电设计规》(GB50055-93)

K∑——同时系数查《通用用电设备配电设计规》(GB50055-93)

Pe——用电设备额定功率

Ijs——计算电流,根据此值选择电缆截面

tanф——功率因数正切值

根据上式计算得:

用电设备组名称

额定功率Pe

需要系数

功率因数

额定电压

设备相数

视在功率

有功功率

无功功率

计算电流

278.3

380

三相

259.5

194.8

171.4

394.7

63.2

63.2

44.2

38

84

60

48

36

79.8

总负荷:

同时系数:

0.7

进线相序:

三相

总功率:

281.1

总功率因数:

0.75

视在功率:

256.9

有功功率:

196.7

无功功率:

165.3

计算电流:

240.8

查表得从箱变至配电箱进线选用YJV-3*120+2*70mm2线,配电箱至45T龙门吊选用YJV-3*95+2*50mm2线,至制浆站、备用电源选用YJV-3*50+2*25mm2。

7、配电箱二

配电箱二主要供电设备:

45T龙门吊、检修车间、办公用电;

总功率

42.9

30.6

91.2

32

24

60.8

292.81

239.5

179.8

158.2

223.8

查表得从箱变至配电箱进线选用YJV-3*120+2*70mm2线,配电箱至45T龙门吊选用YJV-3*95+2*50mm2线,至检修车间、办公用电选用YJV-3*25+2*16mm2。

8、配电箱三

配电箱五主要供电设备:

轴流风机、储浆罐、隧道照明;

176

132

334.3

36.8

29.4

22.1

55.8

45

114

225.4

0.8

232.2

185.8

139.3

217

查表得从箱变至配电箱进线选用YJV-3*95+2*50mm2线,配电箱至轴流风机选用YJV-3*70+2*35mm2线,至储浆罐、隧道照明选用YJV-3*50+2*25mm2。

9、配电箱四

循环水泵、冷却塔、井口搅拌电机、井口抽水泵、防洪水泵;

120

90

227.9

27.8

17.6

22.2

13.2

16.7

33.4

42.2

22.5

18

13.5

34.2

18.8

11.3

28.5

188.3

168.7

135

101.2

157.7

查表得从箱变至配电箱进线选用YJV-3*95+2*50mm2线,配电箱至循环水泵选用YJV-3*70+2*35mm2线,至冷却塔、井口搅拌电机、井口抽水泵、防洪水泵选用YJV-3*16+2*10mm2。

12、电气平面图(附后)

13、电气系统图(附后)

十一、电气设备选择

1、箱式变电站容量确定

箱式变电站输入电压10KV,输出电压400V/230V。

箱式变电站容量为盾构施工配套设备及现场施工生活用电视在计算负荷。

箱式变电站容量为:

P3=Sjs3

P3=1862.31KVA

选箱式变电站容量为1000KVA

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1