最新人教版六年级数学上册第二单元圆柱与圆锥教案设计Word文档格式.docx

上传人:b****5 文档编号:21441913 上传时间:2023-01-30 格式:DOCX 页数:17 大小:26.38KB
下载 相关 举报
最新人教版六年级数学上册第二单元圆柱与圆锥教案设计Word文档格式.docx_第1页
第1页 / 共17页
最新人教版六年级数学上册第二单元圆柱与圆锥教案设计Word文档格式.docx_第2页
第2页 / 共17页
最新人教版六年级数学上册第二单元圆柱与圆锥教案设计Word文档格式.docx_第3页
第3页 / 共17页
最新人教版六年级数学上册第二单元圆柱与圆锥教案设计Word文档格式.docx_第4页
第4页 / 共17页
最新人教版六年级数学上册第二单元圆柱与圆锥教案设计Word文档格式.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

最新人教版六年级数学上册第二单元圆柱与圆锥教案设计Word文档格式.docx

《最新人教版六年级数学上册第二单元圆柱与圆锥教案设计Word文档格式.docx》由会员分享,可在线阅读,更多相关《最新人教版六年级数学上册第二单元圆柱与圆锥教案设计Word文档格式.docx(17页珍藏版)》请在冰豆网上搜索。

最新人教版六年级数学上册第二单元圆柱与圆锥教案设计Word文档格式.docx

(1)课件显示:

一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:

药水水柱的高低和水柱的什么有关?

(2)引导小结:

水柱的高低和水柱的高有关.

(3)结合课本回答什么叫圆柱的高。

(板书:

圆柱两个底面之间的距离叫做高。

(4)讨论交流:

圆柱的高的特点。

①课件显示:

装满牙签的塑料盒,问:

这些牙签是圆柱的高吗?

假如牙签细一些,再细一些,能装多少根?

②初步感知:

面对圆柱的高,你想说些什么?

归纳小结并板书:

圆柱的高有无数条,高的长度都相等。

③深化感知:

面对这数不清的高,测量哪一条最为简便?

老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.

4.圆柱的侧面展开(例2)

(1)动手操作:

请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.

反馈后讨论:

展开后得到长方形和正方形的是怎样剪的?

展开后得到平行四边形的是怎样剪的?

      ┌长方形

板书:

沿高剪┤      斜着剪:

平行四边形

      └正方形

强调:

我们先研究具有代表性的长方形与圆柱的关系.

(2)寻求发现.展开的长方形的长和宽与圆柱的关系.

①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。

③同学交流后说出自己的发现:

这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。

①讨论:

平行四边形能否通过什么方法转化成长方形?

课件显示:

平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。

②想一想:

当圆柱底面周长与高相等时,侧面展开图是什么形?

③引导小结:

不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.

三、巩固练习

1.做第11页“做一做”的第2题。

2.做第15页练习二的第3题。

教师行间巡视,对有困难的学生及时辅导。

3.做第15页练习二的第4题。

四、布置作业

完成一课三练P15的1、2题。

┌长方形

 └正方形

圆柱的底面周长→长方形的长

圆柱的高→长方形的宽

 

(2)圆柱的表面积

P13-14页例3-例4,完成“做一做”及练习二的部分习题。

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

掌握圆柱侧面积和表面积的计算方法。

运用所学的知识解决简单的实际问题。

1.指名学生说出圆柱的特征.

2.口头回答下面问题.

(1)一个圆形花池,直径是5米,周长是多少?

(2)长方形的面积怎样计算?

长方形的面积=长×

宽.

二、新课

1.圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:

这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的侧面积应该怎样计算呢?

(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:

圆柱的侧面积=底面周长×

高)

2.侧面积练习:

练习七第5题

(1)学生审题,回答下面的问题:

① 这两道题分别已知什么,求什么?

② 计算结果要注意什么?

(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

(3)小结:

要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3.理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?

(通过操作,使学生认识到:

圆柱的表面由上下两个底面和侧面组成。

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:

圆柱的表面积=圆柱的侧面积+底面积×

2

4.教学例4

(1)出示例3。

学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

(2)求的是厨师帽所用的材料,需要注意些什么?

(厨师帽没有下底面,说明它只有一个底面)

(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。

(做完后,集体订正。

指名学生回答自己在计算时,最后的得数是怎样取得的。

由此指出:

这道题使用的材料要比计算得到的结果多一些。

因此,这里不能用四舍五入法取近似值。

这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。

这种取近值的方法叫做进一法。

① 侧面积:

3.14×

20×

28=1758.4(平方厘米)

②底面积:

(20÷

2)2=314(平方厘米)

③表面积:

1758.4+314=2072.4≈2080(平方厘米)

5.小结:

在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;

水桶用铁皮是侧面积加上一个底面积;

油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.

1.做第14页“做一做”。

(求表面积包括哪些部分?

2.练习七第6题。

圆柱的侧面积=底面周长×

圆柱的表面积=圆柱的侧面积+底面积×

例4:

① 侧面积:

3表面积:

圆柱的表面积练习课

练习二余下的练习。

1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

1、圆柱的侧面积怎么求?

(圆柱的侧面积=底面周长×

2、圆柱的表面积怎么求?

(圆柱的表面积=圆柱的侧面积+底面积×

2)

3、练习二第14题:

根据已知条件求出圆柱的侧面积和表面积。

(第②题已知圆柱的底面周长,对于求侧面积较有利。

但在求底面积时,要先应用C÷

π÷

2来求出圆柱的底面半径)

二、实际应用

1、练习二第13题

(1)复习长方体、正方体的表面积公式:

长方体的表面积=(长×

宽+长×

高+宽×

高)×

正方体的表面积=棱长×

棱长×

6

(2)学生独立完成第13题:

计算长方体、正方体、圆柱体的表面积,并指名板演。

2、练习二第7题

(1)用教具辅助,引导学生思考:

前轮转动一周,压路面的面积是指什么?

(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)

(2)学生独立完成这道题,集体订正。

3、练习二第9题

(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?

(侧面和下底面,也就是只有一个底面积)

(2)指名板演,其他学生独立完成于课堂练习本上。

4、练习二第16题

(1)学生读题理解题意后尝试独立解题。

(2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。

5、练习二第19题

(1)学生小组讨论:

可以漆色的面有哪些?

(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。

因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。

(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。

三、布置作业

练习二第8、10、15、17、18及20题完成在作业本上。

长方体的表面积=(长×

(3)圆柱的体积

P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

3、渗透转化思想,培养学生的自主探索意识。

掌握圆柱体积的计算公式。

圆柱体积的计算公式的推导。

1、长方体的体积公式是什么?

(长方体的体积=长×

宽×

高,长方体和正方体体积的统一公式“底面积×

高”,即长方体的体积=底面积×

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:

把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。

(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;

如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

(课件演示将圆柱细分,拼成一个长方体)

(3)通过观察,使学生明确:

长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

(长方体的体积=底面积×

高,所以圆柱的体积=底面积×

高,V=Sh)

2、教学补充例题

(1)出示补充例题:

一根圆柱形钢材,底面积是50平方厘米,高是2.1米。

它的体积是多少?

(2)指名学生分别回答下面的问题:

①这道题已知什么?

求什么?

②能不能根据公式直接计算?

③计算之前要注意什么?

(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)出示下面几种解答方案,让学生判断哪个是正确的.

①V=Sh

50×

2.1=105(立方厘米)

 答:

它的体积是105立方厘米。

②2.1米=210厘米

 V=Sh

210=10500(立方厘米)

它的体积是10500立方厘米。

③50平方厘米=0.5平方米

0.5×

2.1=1.05(立方米)

它的体积是1.05立方米。

④50平方厘米=0.005平方米

0.005×

2.1=0.0105(立方米)

它的体积是0.0105立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

(4)做第20页的“做一做”。

学生独立做在练习本上,做完后集体订正.

3、引导思考:

如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?

(V=πr2h)

4、教学例6

(1)出示例5,并让学生思考:

要知道杯子能不能装下这袋牛奶,得先知道什么?

(应先知道杯子的容积)

(2)学生尝试完成例6。

①杯子的底面积:

(8÷

2)2=3.14×

42=3.14×

16=50.24(cm2)

②杯子的容积:

50.24×

10=502.4(cm3)=502.4(ml)

5、比较一下补充例题、例6有哪些相同的地方和不同的地方?

(相同的是都要用圆柱的体积计算公式进行计算;

不同的是补充例题已给出底面积,可直接应用公式计算;

例6只知道底面直径,要先求底面积,再求体积.)

1、做第21页练习三的第1题.

2、练习三的第2题.

这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

练习三第3、4题。

圆柱的体积=底面积×

高V=Sh或V=πr2h

例6:

①杯子的底面积:

圆柱的体积练习课

1、使学生能够运用公式正确地计算圆柱的体积和容积。

4、渗透转化思想,培养学生的自主探索意识。

灵活应用圆柱的体积公式解决实际问题。

一、复习

1、复习圆柱体积的推导过程

长方体的体积=底面积×

高,即V=Sh。

2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。

二、解决实际问题

1、练习三第7题。

学生思考:

要求粮囤所能装的玉米的重量,需先知道什么?

然后独立完成。

2、练习三第5题。

(1)指导学生变换公式:

因为V=Sh,所以h=V÷

S。

也可以列方程解答。

(2)学生选择喜爱的方法解答这道题目。

3、练习三第8题。

(1)学生读题后,指名说说对题意的理解:

求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

(2)在充分理解题意后学生独立完成,集体订正。

4、练习三第9、10题

(1)学生独立审题,完成9、10两题。

(2)评讲第9题:

要怎样才能判断出800ml的果汁够倒三杯吗?

必须先求出什么?

怎么求?

(需先求出圆柱形玻璃杯的容积,用公式V=Sh)

(3)指名说说解答第10题的思路:

根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。

利用这个底面积再求出另一个圆柱的体积。

2、圆锥

(1)圆锥的认识

教科书P23-26的内容,P24“做一做”,完成练习四的第1、2题。

1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

2、通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

3、培养学生的自主探索意识,激发学生强烈的求知欲望。

掌握圆锥的特征。

正确理解圆锥的组成。

1、圆柱体积的计算公式是什么?

2、圆柱的特征是什么?

1、圆锥的认识

(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。

(在图上标出侧面)

(4)让学生看着教具,指出:

从圆锥的顶点到底面圆心的距离叫做高。

(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

2、小结

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:

底面是圆,侧面是一个曲面,有一个顶点和一条高.

3、测量圆锥的高

由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

(1)先把圆锥的底面放平;

(2)用一块平板水平地放在圆锥的顶点上面;

(3)竖直地量出平板和底面之间的距离。

4、教学圆锥侧面的展开图

(1)学生猜想圆锥的侧面展开后会是什么图形呢?

(2)实验来得出圆锥的侧面展开后是一个扇形。

5、虚拟的圆锥

(1)先让学生猜测:

一个长方形通过旋转,可以形成一个圆柱。

那么将三角形制片绕着一条直角边旋转,会形成什么形状?

(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。

三、课堂练习

1、做第24页“做一做”的题目。

让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

2、练习四的第1题。

(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

3.完成练习四的第2题。

四、总结

关于圆锥你知道了些什么?

你能向同学介绍你手中的圆锥吗?

(2)圆锥的体积

教学内容:

第25~26页,例2、例3及练习四的第3~8题。

教学目的:

1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

掌握圆锥体积的计算公式。

正确探索出圆锥体积和圆柱体积之间的关系。

1、圆锥有什么特征?

(使学生进一步熟悉圆锥的特征:

底面、侧面、高和顶点)

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:

“圆柱的体积=底面积×

高”。

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

(2)圆锥的体积该怎样求呢?

能不能也通过已学过的图形来求呢?

(指出:

我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?

(4)先在圆锥里装满水,然后倒入圆柱。

让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。

(5)这说明了什么?

(这说明圆锥的体积是和它等底等高的圆柱的体积的

圆锥的体积=

×

圆柱的体积=

底面积×

高,字母公式:

V=

Sh

2、教学练习四第3题

(1)这道题已知什么?

已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

3、巩固练习:

完成练习四第4题。

4、教学例3.

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?

(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?

(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。

(注意学生最后得数的取舍方法是否正确)

四、巩固练习

1、做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2、做练习四的第8题。

(1)引导学生学生思考回答以下问题:

① 这道题已知什么?

② 求圆锥的体积必须知道什么?

③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习四的第6题。

(1)指名学生先后回答下面问题:

①圆柱的侧面积等于多少?

②圆柱的表面积的含义是什么?

怎样计算?

③圆柱体积的计算公式是什么?

④圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

五、总结

这节课学习了哪些内容?

你是如何准确地记住圆锥的体积公式的?

圆锥的体积=

字母公式:

3、整理和复习

P29页第1-3题,完成练习五。

1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。

2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。

3、学生认真的学习态度。

圆柱、圆锥表面积、体积的计算

圆柱、圆锥的特征和它们的体积之间的联系与区别

一、复习圆柱

1、圆柱的特征

(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:

这些图形叫什么图形?

(圆柱)有什么特点?

(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆.两个底面之间的距离叫做高.侧面是一个曲面.)

(2)做第29页第1题:

指出几个图形中哪些是圆柱。

2、圆柱的侧面积和表面积

(1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:

圆柱的侧面是指哪一部分?

它是什么形状的?

(长方形或正方形)圆柱的侧面积怎样计算?

(底面的周长×

高)为什么要这样计算?

(因为:

底面的周长=长方形的长,高=长方形的宽)

(2)表面积是由哪几部分组成的?

(圆柱的侧面积+两个底面的面积)

(3)第29页第2题中求圆柱表面积的部分。

3、圆柱的体积

(1)圆柱的体积怎样计算?

(底面积×

高)计算公式是

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1