温度采集系统课程设计.docx

上传人:b****2 文档编号:2143519 上传时间:2022-10-27 格式:DOCX 页数:16 大小:659.43KB
下载 相关 举报
温度采集系统课程设计.docx_第1页
第1页 / 共16页
温度采集系统课程设计.docx_第2页
第2页 / 共16页
温度采集系统课程设计.docx_第3页
第3页 / 共16页
温度采集系统课程设计.docx_第4页
第4页 / 共16页
温度采集系统课程设计.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

温度采集系统课程设计.docx

《温度采集系统课程设计.docx》由会员分享,可在线阅读,更多相关《温度采集系统课程设计.docx(16页珍藏版)》请在冰豆网上搜索。

温度采集系统课程设计.docx

温度采集系统课程设计

1引言

1.1单片机概述

单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。

单片微型计算机简称单片机,是典型的嵌入式微控制器(MicrocontrollerUnit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。

INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。

早期的单片机都是8位或4位的。

其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。

此后在8031上发展出了MCS51系列单片机系统。

基于这一系统单片机系统直到现在还在广泛使用。

随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。

90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。

随着INTELi960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。

而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。

目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。

当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。

而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。

单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。

它又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。

相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。

概括的讲:

一块芯片就成了一台计算机。

它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。

同时,学习使用单片机是了解计算机原理与结构的最佳选择。

1.2温度采集设计背景

随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。

在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技构中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域己经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。

测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段

①传统的分立式温度传感器

②模拟集成温度传感器

③智能温度传感器

目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。

社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍AD590的结构特征及控制方法,它是美国ANALOGDEVICES公司的单片集成两端感温电流源,并对以此传感器,AT89C51单片机为控制器构成的数字温度测量装置的工作原理及程序设计作了详细的介绍。

与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,主要用于对测温要求比较准确的场所,或科研实验室使用。

该设计控制器使用ATMBL公司的AT89C51单片机,测温传感器使用AD590,最终用LED来实现温度显示。

2设计目的任务和要求

2.1设计目的

本设计包括确定控制任务、系统总体方案设计、硬件系统设计、软件程序的设计等,使学生进一步学习与理解计算机控制系统的构成原理、接口电路与应用程序,巩固与综合专业基础知识和相关专业课程知识,提高学生运用理论知识解决实际问题的实践技能;

2.2设计任务

以8086CPU(或单片机)为核心设计一个温度采集系统,系统可以实现一路温度的采集,在3位LED显示器上显示当前温度。

2.3设计内容

本设计所用器件主要有传感器,A/D转换器,8086CPU(或单片机),可编程并行接口8255(或不用),LED显示器等。

首先传感器把所测的温度转换为电压,输入A/D转换器中进行转换,然后再把得到的二进制数经过CPU在LED上显示出来。

3系统总体方案设计

3.1方案设计

该系统主要有温度测量和数据采集两部分电路组成,在温度测量中用电测法测量温度时,首先要通过温度传感器将温度转换成电量,温度传感器有好多种方式,这里选择AD590,它是一种半导体感受式的,由测温电阻、二极管和集成电路器件组成。

利用温度传感器测出温度后,在将随被测温度变化的电压或电流采集过来,利用A/D转换器即ADC0809转换后,就可以用单片机进行数据的处理,在显示电路上,将被测温度显示出来。

3.2总体设计框图

4系统器件的选择和性能介绍

4.1CPU的选择

本次设计以CPU选用AT89C5l作为控制芯片.AT89C51的结构简单并可以在编程器上实现闪烁式的电擦写达几万次以上.使用方便等优点。

AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

AT89C51的引脚结构图所图示,其管脚说明如下:

(1)AT89C51管脚图

VCC:

供电电压。

   

GND:

接地。

   

P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为低八位地址接收。

  

  P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

   

 P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口同时为闪烁编程和编程校验接收一些控制信号。

 

  RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

  

/PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

   

 /EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

  

XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入。

  

XTAL2:

来自反向振荡器的输出。

4.2温度传感器

AD590是一种单片集成的两端式温度敏感电流源,它有金属壳,小型的扁平封装芯片和不锈钢等几种封装形式,实验平台利用IC温度传感器AD590作为测温器,AD590是一种精度和线性度较好的双端集成温度传感器,其输出电流与绝对温度有关,对于电源电压从5-10V变化只引起1A最大电流的变化或1摄氏度等效误差。

(2)传感器工作原理图

上图给出了用于获得正比于绝对温度的输出电流的基本温度敏感电路,当温度有10℃的变化时输出电压变化为20mV,即该电路M点电压随温度变化为2mV/℃。

将温度传感器输出的小信号跟随放大19.2倍左右后,送至8位A/D转换器转换成数字量。

4.3A/D转换器

模数转换采用ADC0809,它是芯片输出端具有可控的三态门,这种芯片的输出端可以直接和系统总线相连,由读信号控制三态门,转换结束后,CPU执行一条输入指令,从而产生读信号,将数据从A/D转换器取出。

ADC0809是典型的8位8通道逐次逼近式A/D转换器,CMOS工艺,可实现8路模拟信号的分时采集,片内有8路模拟选通开关,以及相应的通道地址锁存译码电路,其转换时间为100µs左右。

ADC0809内部结构如图所示,图中多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用一个A/D转换,地址锁存与译码电路完成对A、B、C3个地址位进行锁存和译码,其译码输出用于通道选择。

8位A/D转换器是逐次逼近式,由控制与时序电路、逐次逼近寄存器、树状开关以及256R电阻阶梯网络等组成。

输出器用于存放和输出转换得到的数字量。

图(3)A/D转换器工作原理图

因为所选的AD0809所转换的电压范围不大,这样一来,当所采集的温度是0时,转换的电压量是0V,通过A/D转换后所对应的数字量是。

当采集的温度是255℃时,所转换的电压量是10V,通过A/D转换后所对应的数字量是。

这样看来,从A/D输出的数字量和显示的温度是一一对应的。

假如数字量是时,通过8255A编程就可在显示器上显示3℃。

4.48255并行接口

当温度通过AD590后,连续的物理量转换为连续的电压量,电压信号输入到A/D

模拟信号输入端。

当工作时,CPU用输出指令将PC0置零,使B/C端得到一个低电平从而启动转换。

此后用输入指令不断读端口PC4~PC7测试并判断PC4是否为零。

如果PC4为零则说明完成一次A/D转换。

此时在CPU的读周期作用下它向8255A发出个读信号。

之后便从A端口读数据;在写周期的作用下CPU向8

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1