na材料表面上分子的绑定能计算Word文件下载.docx
《na材料表面上分子的绑定能计算Word文件下载.docx》由会员分享,可在线阅读,更多相关《na材料表面上分子的绑定能计算Word文件下载.docx(17页珍藏版)》请在冰豆网上搜索。
(1)掌握分子力学和分子动力学的模拟方法;
(2)学会使用Visualizer的各种建模和可视化工具;
(3)熟悉Forcite模块的功能。
2.实验原理:
基于“Born-Oppenheimer”近似,可以将原子运动的Schrö
dinger方程,分别表示为电子和核运动的Schrö
dinger方程。
直接求解核的运动方程,并将其中的能量以经验的力场函数表示,即为分子力学方法。
如果将能量以力场形式表示,直接求解牛顿方程,就是分子动力学方法。
…………………………………..牛顿方程
3.实验内容
实验1.材料表面上分子的绑定能计算;
4.实验设备和仪器
(1)硬件:
多台PC机和一台高性能计算服务器。
(2)软件:
主要利用Materialsstudio软件包里的Visualizer和Forcite模块。
5.实验方法和步骤
5.1建立材料表面和分子的结构模型
按照所研究表面材料的晶胞参数建立晶体结构。
方法是可以自己建立模型,也可以在软件自带的结构库中直接读入结构文件。
如:
在菜单栏选择File|Import,进入structures/metal/pure-metal文件夹,选择na.msi文件。
按照所需要的晶面对晶体进行切割。
方法是在菜单栏中打开Build|Surfaces|CleaveSurface对话框,
调整晶面指数和表面厚度。
默认的表面为(100),厚度为1.0,按下Cleave按钮。
将表面扩大为超晶胞结构。
方法是在菜单栏中选择Build|Symmetry|SuperCell,
调整U和V的值,按下CreateSupercell按钮。
建立二维的表面环境。
方法是利用BuildVacuumSlab工具建立三维的周期边界条件或利用PropertiesExplorer将其模型转化为2D网格。
将分子放到材料表面上。
新建一分子文件,并按分子的特点重新命名。
然后在主菜单栏中选择Edit|Copy;
在任务栏中双击表面分子文件,在主菜单栏选择Edit|Paste。
5.2运行分子力学和分子动力学运算
在工具栏中选择Forcite模块,
其对话框如下图。
在Energy对话框中选择相应的力场,如Dreading,Compass和Universal等
步骤1:
利用分子力学进行分子几何优化。
在Setup对话框中,将Task项设置为GeometryOptimization,标准设为Fine。
在Task后的More按钮中,可以设置Maxiterations步和能量最小化的算法。
默认算法为Smart。
按下Run按钮,开始运行计算。
优化成功:
优化参数:
优化表格:
步骤2:
针对不同要求的进行各种模拟计算
1.将Forcite模块的Task项设置为Energy,标准设为Fine,按下Run按钮,计算E分子。
计算成功:
得到分子能量:
E分子=0.485709kcal/mol
2,计算表面能:
将Forcite模块的Task项设置为Energy,标准设为Fine,按下Run按钮
E表面=-0.152959kcal/mol
3,计算总能量:
得到能量:
E总=3.980487kcal/mol
5分析、讨论实验结果
实验1.计算出分子在材料表面上的绑定能。
计算公式:
E绑定能=E总-(E表面+E分子)
=3.980487kcal/mol-(-0.152959kcal/mol+0.485709kcal/mol)
=3.647637kcal/mol